Thomas J D Jørgensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5817154/publications.pdf

Version: 2024-02-01

65 3,521 31 57
papers citations h-index g-index

71 71 71 3632
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	The changing face of SDS denaturation: Complexes of Thermomyces lanuginosus lipase with SDS at pH 4.0, 6.0 and 8.0. Journal of Colloid and Interface Science, 2022, 614, 214-232.	9.4	15
2	Structural Basis for Dityrosine-Mediated Inhibition of $\hat{l}\pm$ -Synuclein Fibrillization. Journal of the American Chemical Society, 2022, 144, 11949-11954.	13.7	6
3	Ultraviolet Photodissociation of Protonated Peptides and Proteins Can Proceed with H/D Scrambling. Analytical Chemistry, 2021, 93, 691-696.	6.5	8
4	The intrinsic instability of the hydrolase domain of lipoprotein lipase facilitates its inactivation by ANGPTL4-catalyzed unfolding. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	29
5	Probing the Conformational Dynamics of Affinity-Enhanced T Cell Receptor Variants upon Binding the Peptide-Bound Major Histocompatibility Complex by Hydrogen/Deuterium Exchange Mass Spectrometry. Biochemistry, 2021, 60, 859-872.	2.5	3
6	Lipid Peroxidation Products HNE and ONE Promote and Stabilize Alpha-Synuclein Oligomers by Chemical Modifications. Biochemistry, 2021, 60, 3644-3658.	2.5	13
7	Molecular Architecture of the Antiophidic Protein DM64 and its Binding Specificity to Myotoxin II From Bothrops asper Venom. Frontiers in Molecular Biosciences, 2021, 8, 787368.	3.5	2
8	Deglycosylation by the Acidic Glycosidase PNGase H ⁺ Enables Analysis of N-Linked Glycoproteins by Hydrogen/Deuterium Exchange Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 2305-2312.	2.8	16
9	Avoiding H/D Scrambling with Minimal Ion Transmission Loss for HDX-MS/MS-ETD Analysis on a High-Resolution Q-TOF Mass Spectrometer. Analytical Chemistry, 2020, 92, 7453-7461.	6.5	22
10	Unfolding of monomeric lipoprotein lipase by ANGPTL4: Insight into the regulation of plasma triglyceride metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4337-4346.	7.1	56
11	Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nature Methods, 2019, 16, 595-602.	19.0	452
12	Did evolution create a flexible ligand-binding cavity in the urokinase receptor through deletion of a plesiotypic disulfide bond?. Journal of Biological Chemistry, 2019, 294, 7403-7418.	3.4	11
13	A disordered acidic domain in GPIHBP1 harboring a sulfated tyrosine regulates lipoprotein lipase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6020-E6029.	7.1	51
14	Dissecting the interaction between transglutaminase 2 and fibronectin. Amino Acids, 2017, 49, 489-500.	2.7	23
15	Uranyl Photocleavage of Phosphopeptides Yields Truncated Câ€Terminally Amidated Peptide Products. ChemBioChem, 2017, 18, 1117-1122.	2.6	9
16	Conformational preludes to the latency transition in PAI-1 as determined by atomistic computer simulations and hydrogen/deuterium-exchange mass spectrometry. Scientific Reports, 2017, 7, 6636.	3.3	11
17	The T-Cell Receptor Can Bind to the Peptide-Bound Major Histocompatibility Complex and Uncomplexed \hat{l}^2 sub>2-Microglobulin through Distinct Binding Sites. Biochemistry, 2017, 56, 3945-3961.	2.5	8
18	An Asymmetric Runaway Domain Swap Antithrombin Dimer as a Key Intermediate for Polymerization Revealed by Hydrogen/Deuterium-Exchange Mass Spectrometry. Analytical Chemistry, 2017, 89, 616-624.	6.5	7

#	Article	IF	Citations
19	Epitope-dependent Functional Effects of Celiac Disease Autoantibodies on Transglutaminase 2. Journal of Biological Chemistry, 2016, 291, 25542-25552.	3.4	20
20	Copper(II) Ions Increase Plasminogen Activator Inhibitor Type 1 Dynamics in Key Structural Regions That Govern Stability. Biochemistry, 2016, 55, 4386-4398.	2.5	11
21	Removal of N-Linked Glycosylations at Acidic pH by PNGase A Facilitates Hydrogen/Deuterium Exchange Mass Spectrometry Analysis of N-Linked Glycoproteins. Analytical Chemistry, 2016, 88, 12479-12488.	6.5	38
22	An RNA Aptamer Inhibits a Mutation-Induced Inactivating Misfolding of a Serpin. Cell Chemical Biology, 2016, 23, 700-708.	5.2	7
23	The acidic domain of the endothelial membrane protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain. ELife, 2016, 5, e12095.	6.0	74
24	The angiopoietin-like protein ANGPTL4 catalyzes unfolding of the hydrolase domain in lipoprotein lipase and the endothelial membrane protein GPIHBP1 counteracts this unfolding. ELife, 2016, 5, .	6.0	78
25	Effect of Metals in Biomimetic Dimetal Complexes on Affinity and Gas-Phase Protection of Phosphate Esters. Analytical Chemistry, 2015, 87, 7060-7068.	6.5	7
26	Conformational Analysis of Large and Highly Disulfide-Stabilized Proteins by Integrating Online Electrochemical Reduction into an Optimized H/D Exchange Mass Spectrometry Workflow. Analytical Chemistry, 2015, 87, 8880-8888.	6.5	44
27	A Phosphorylation Tag for Uranyl Mediated Protein Purification and Photo Assisted Tag Removal. PLoS ONE, 2014, 9, e91138.	2.5	6
28	Measuring the Hydrogen/Deuterium Exchange of Proteins at High Spatial Resolution by Mass Spectrometry: Overcoming Gas-Phase Hydrogen/Deuterium Scrambling. Accounts of Chemical Research, 2014, 47, 3018-3027.	15.6	81
29	Rýcktitelbild: Co-existence of Two Different α-Synuclein Oligomers with Different Core Structures Determined by Hydrogen/Deuterium Exchange Mass Spectrometry (Angew. Chem. 29/2014). Angewandte Chemie, 2014, 126, 7808-7808.	2.0	0
30	Local Transient Unfolding of Native State PAIâ€1 Associated with Serpin Metastability. Angewandte Chemie - International Edition, 2014, 53, 9751-9754.	13.8	29
31	Ion source parameters and hydrogen scrambling in the ECD of selectively deuterated peptides. International Journal of Mass Spectrometry, 2014, 367, 21-27.	1.5	2
32	Coâ€existence of Two Different αâ€Synuclein Oligomers with Different Core Structures Determined by Hydrogen/Deuterium Exchange Mass Spectrometry. Angewandte Chemie - International Edition, 2014, 53, 7560-7563.	13.8	103
33	Dissecting the Effect of RNA Aptamer Binding on the Dynamics of Plasminogen Activator Inhibitor 1 Using Hydrogen/Deuterium Exchange Mass Spectrometry. ACS Chemical Biology, 2014, 9, 174-182.	3.4	32
34	Activity-regulating structural changes and autoantibody epitopes in transglutaminase 2 assessed by hydrogen/deuterium exchange. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17146-17151.	7.1	51
35	On the photostability of peptides after selective photoexcitation of the backbone: prompt versus slow dissociation. Physical Chemistry Chemical Physics, 2014, 16, 15831-15838.	2.8	22
36	Affinity Capture of Biotinylated Proteins at Acidic Conditions to Facilitate Hydrogen/Deuterium Exchange Mass Spectrometry Analysis of Multimeric Protein Complexes. Analytical Chemistry, 2013, 85, 7052-7059.	6.5	13

#	Article	IF	CITATIONS
37	Improved PET Imaging of uPAR Expression Using new 64Cu-labeled Cross-Bridged Peptide Ligands: Comparative in vitro and in vivo Studies. Theranostics, 2013, 3, 618-632.	10.0	50
38	A Flexible Multidomain Structure Drives the Function of the Urokinase-type Plasminogen Activator Receptor (uPAR)*. Journal of Biological Chemistry, 2012, 287, 34304-34315.	3 . 4	43
39	Spatially Resolved Protein Hydrogen Exchange Measured by Subzero-Cooled Chip-Based Nanoelectrospray Ionization Tandem Mass Spectrometry. Analytical Chemistry, 2012, 84, 4467-4473.	6.5	41
40	Hydrogen/Deuterium Exchange Mass Spectrometry Reveals Specific Changes in the Local Flexibility of Plasminogen Activator Inhibitor 1 upon Binding to the Somatomedin B Domain of Vitronectin. Biochemistry, 2012, 51, 8256-8266.	2.5	29
41	Spatially Resolved Protein Hydrogen Exchange Measured by Matrix-Assisted Laser Desorption In-Source Decay. Analytical Chemistry, 2011, 83, 8859-8862.	6.5	35
42	Investigation of amide hydrogen back-exchange in Asp and His repeats measured by hydrogen (1H/2H) exchange mass spectrometry. International Journal of Mass Spectrometry, 2011, 302, 110-115.	1.5	28
43	Loss of Ammonia during Electron-Transfer Dissociation of Deuterated Peptides as an Inherent Gauge of Gas-Phase Hydrogen Scrambling. Analytical Chemistry, 2010, 82, 9755-9762.	6.5	40
44	Structure and allosteric effects of low-molecular-weight activators on the protein kinase PDK1. Nature Chemical Biology, 2009, 5, 758-764.	8.0	134
45	Protein Hydrogen Exchange Measured at Single-Residue Resolution by Electron Transfer Dissociation Mass Spectrometry. Analytical Chemistry, 2009, 81, 5577-5584.	6.5	204
46	Hydrogen atom scrambling in selectively labeled anionic peptides upon collisional activation by MALDI tandem time-of-flight mass spectrometry. Journal of the American Society for Mass Spectrometry, 2008, 19, 1719-1725.	2.8	27
47	Electron Transfer Dissociation Facilitates the Measurement of Deuterium Incorporation into Selectively Labeled Peptides with Single Residue Resolution. Journal of the American Chemical Society, 2008, 130, 17453-17459.	13.7	158
48	Gas-Phase Fragmentation of Peptides by MALDI in-Source Decay with Limited Amide Hydrogen (¹ H/ ² H) Scrambling. Analytical Chemistry, 2008, 80, 6431-6435.	6. 5	35
49	Electron Capture Dissociation Proceeds with a Low Degree of Intramolecular Migration of Peptide Amide Hydrogens. Journal of the American Chemical Society, 2008, 130, 1341-1349.	13.7	167
50	The Origins of Enhanced Activity in Factor VIIa Analogs and the Interplay between Key Allosteric Sites Revealed by Hydrogen Exchange Mass Spectrometry. Journal of Biological Chemistry, 2008, 283, 13378-13387.	3 . 4	28
51	Development of a Peptide Probe for the Occurrence of Hydrogen (¹ H/ ² H) Scrambling upon Gas-Phase Fragmentation. Analytical Chemistry, 2007, 79, 8686-8693.	6.5	77
52	Solution structure of recombinant somatomedin B domain from vitronectin produced in <i>Pichia pastoris</i> . Protein Science, 2007, 16, 1934-1945.	7.6	32
53	Mass spectrometric characterization of conformational preludes to \hat{I}^2 2-microglobulin aggregation. International Journal of Mass Spectrometry, 2007, 268, 207-216.	1.5	16
54	Characterization of the Functional Epitope on the Urokinase Receptor. Journal of Biological Chemistry, 2006, 281, 19260-19272.	3 . 4	78

#	Article	IF	CITATIONS
55	Allosteric Activation of Coagulation Factor VIIa Visualized by Hydrogen Exchange. Journal of Biological Chemistry, 2006, 281, 23018-23024.	3.4	52
56	Rapid desalting of protein samples for on-line microflow electrospray ionization mass spectrometry. Analytical Biochemistry, 2005, 342, 160-162.	2.4	27
57	Mass spectrometric analysis of protein interactions. Current Opinion in Chemical Biology, 2005, 9, 509-516.	6.1	36
58	Analysis of subsecond protein dynamics by amide hydrogen exchange and mass spectrometry using a quenched-flow setup. Protein Science, 2005, 14, 626-632.	7.6	43
59	Collisional Activation by MALDI Tandem Time-of-flight Mass Spectrometry Induces Intramolecular Migration of Amide Hydrogens in Protonated Peptides. Molecular and Cellular Proteomics, 2005, 4, 1910-1919.	3.8	36
60	Intramolecular Migration of Amide Hydrogens in Protonated Peptides upon Collisional Activation. Journal of the American Chemical Society, 2005, 127, 2785-2793.	13.7	161
61	Dynamics of Urokinase Receptor Interaction with Peptide Antagonists Studied by Amide Hydrogen Exchange and Mass Spectrometryâ€. Biochemistry, 2004, 43, 15044-15057.	2.5	54
62	The combination of an electrospray ion source and an electrostatic storage ring for lifetime and spectroscopy experiments on biomolecules. Review of Scientific Instruments, 2002, 73, 1284-1287.	1.3	127
63	Molecular identification of the insect adipokinetic hormone receptors. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3446-3451.	7.1	273
64	Electron loss from multiply protonated lysozyme ions in high energy collisions with molecular oxygen. Journal of the American Society for Mass Spectrometry, 2001, 12, 889-893.	2.8	26
65	Benefits of 2.94?i¿½m infrared matrix-assisted laser desorption/ionization for analysis of labile molecules by Fourier transform mass spectrometry. , 2000, 14, 578-584.		22