Michael C Phillips

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5816439/publications.pdf

Version: 2024-02-01

8749 19,212 180 75 citations h-index papers

g-index 182 182 182 14269 docs citations times ranked citing authors all docs

11928

134

#	Article	IF	CITATIONS
1	Is ABCA1 a lipid transfer protein?. Journal of Lipid Research, 2018, 59, 749-763.	2.0	122
2	Reference Parameters for Protein Hydrogen Exchange Rates. Journal of the American Society for Mass Spectrometry, 2018, 29, 1936-1939.	1.2	61
3	Directional ABCA1-mediated cholesterol efflux and apoB-lipoprotein secretion in the retinal pigment epithelium. Journal of Lipid Research, 2018, 59, 1927-1939.	2.0	21
4	Helical structure, stability, and dynamics in human apolipoprotein E3 and E4 by hydrogen exchange and mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 968-973.	3.3	38
5	ATP-Binding Cassette Transporter A1 Deficiency in Human Induced Pluripotent Stem Cell-Derived Hepatocytes Abrogates HDL Biogenesis and Enhances Triglyceride Secretion. EBioMedicine, 2017, 18, 139-145.	2.7	23
6	A human APOC3 missense variant and monoclonal antibody accelerate apoC-III clearance and lower triglyceride-rich lipoprotein levels. Nature Medicine, 2017, 23, 1086-1094.	15.2	88
7	A consensus model of human apolipoprotein A-l in its monomeric and lipid-free state. Nature Structural and Molecular Biology, 2017, 24, 1093-1099.	3.6	54
8	Cell lipid metabolism modulators 2-bromopalmitate, D609, monensin, U18666A and probucol shift discoidal HDL formation to the smaller-sized particles: implications for the mechanism of HDL assembly. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1968-1979.	1.2	5
9	Kinetic and Thermodynamic Analyses of Spontaneous Exchange between High-Density Lipoprotein-Bound and Lipid-Free Apolipoprotein A-I. Biochemistry, 2015, 54, 1123-1131.	1.2	23
10	Robust passive and active efflux of cellular cholesterol to a designer functional mimic of high density lipoprotein. Journal of Lipid Research, 2015, 56, 972-985.	2.0	39
11	Molecular Mechanisms of Cellular Cholesterol Efflux. Journal of Biological Chemistry, 2014, 289, 24020-24029.	1.6	449
12	Interaction of Thioflavin T with amyloid fibrils of apolipoprotein A-I N-terminal fragment: Resonance energy transfer study. Journal of Structural Biology, 2014, 185, 116-124.	1.3	23
13	Apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life, 2014, 66, 616-623.	1.5	236
14	Influence of Domain Stability on the Properties of Human Apolipoprotein E3 and E4 and Mouse Apolipoprotein E. Biochemistry, 2014, 53, 4025-4033.	1.2	21
15	Fluorescence study of domain structure and lipid interaction of human apolipoproteins E3 and E4. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1716-1724.	1.2	13
16	The roles of C-terminal helices of human apolipoprotein A-I in formation of high-density lipoprotein particles. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 80-87.	1.2	28
17	Dual Role of an N-terminal Amyloidogenic Mutation in Apolipoprotein A-I. Journal of Biological Chemistry, 2013, 288, 2848-2856.	1.6	37
18	Apolipoprotein E-mediated cell cycle arrest linked to p27 and the Cox2-dependent repression of miR221/222. Atherosclerosis, 2013, 227, 65-71.	0.4	25

#	Article	IF	CITATIONS
19	Interactions of Apolipoprotein A-I with High-Density Lipoprotein Particles. Biochemistry, 2013, 52, 1963-1972.	1.2	22
20	Factors controlling nascent highâ€density lipoprotein particle heterogeneity: ATPâ€binding cassette transporter A1 activity and cell lipid and apolipoprotein AI availability. FASEB Journal, 2013, 27, 2880-2892.	0.2	29
21	Influence of apolipoprotein A-I and apolipoprotein A-II availability on nascent HDL heterogeneity. Journal of Lipid Research, 2013, 54, 3464-3470.	2.0	2
22	Molecular Mechanisms Responsible for the Differential Effects of ApoE3 and ApoE4 on Plasma Lipoprotein–Cholesterol Levels. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 687-693.	1.1	50
23	Comparison of apoA-I helical structure and stability in discoidal and spherical HDL particles by HX and mass spectrometry. Journal of Lipid Research, 2013, 54, 1589-1597.	2.0	30
24	Mechanisms Responsible for the Compositional Heterogeneity of Nascent High Density Lipoprotein. Journal of Biological Chemistry, 2013, 288, 23150-23160.	1.6	35
25	Serum albumin acts as a shuttle to enhance cholesterol efflux from cells. Journal of Lipid Research, 2013, 54, 671-676.	2.0	86
26	New insights into the determination of HDL structure by apolipoproteins. Journal of Lipid Research, 2013, 54, 2034-2048.	2.0	149
27	Effects of the Iowa and Milano Mutations on Apolipoprotein A-I Structure and Dynamics Determined by Hydrogen Exchange and Mass Spectrometry. Biochemistry, 2012, 51, 8993-9001.	1.2	25
28	Cardiovascular Protection by ApoE and ApoE-HDL Linked to Suppression of ECM Gene Expression and Arterial Stiffening. Cell Reports, 2012, 2, 1259-1271.	2.9	159
29	Apolipoprotein A-I helical structure and stability in discoidal high-density lipoprotein (HDL) particles by hydrogen exchange and mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11687-11692.	3.3	69
30	Influence of C-terminal \hat{l}_{\pm} -helix hydrophobicity and aromatic amino acid content on apolipoprotein A-I functionality. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 456-463.	1.2	29
31	Cytoskeleton disruption in J774 macrophages: Consequences for lipid droplet formation and cholesterol flux. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 464-472.	1.2	18
32	Fluorescence Analysis of the Lipid Binding-Induced Conformational Change of Apolipoprotein E4. Biochemistry, 2012, 51, 5580-5588.	1.2	21
33	Cholesterol Efflux and Atheroprotection. Circulation, 2012, 125, 1905-1919.	1.6	772
34	Hepatic sortilin regulates both apolipoprotein B secretion and LDL catabolism. Journal of Clinical Investigation, 2012, 122, 2807-2816.	3.9	190
35	Influence of N-terminal helix bundle stability on the lipid-binding properties of human apolipoprotein A-I. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 25-30.	1.2	22
36	A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY-cholesterol. Journal of Lipid Research, 2011, 52, 2332-2340.	2.0	176

#	Article	IF	CITATIONS
37	Novel In Vivo Method for Measuring Cholesterol Mass Flux in Peripheral Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2865-2871.	1.1	14
38	Influence of Apolipoprotein A-I Domain Structure on Macrophage Reverse Cholesterol Transport in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 320-327.	1.1	25
39	High-density lipoprotein heterogeneity and function in reverse cholesterol transport. Current Opinion in Lipidology, 2010, 21, 229-238.	1.2	281
40	From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature, 2010, 466, 714-719.	13.7	1,018
41	Surface plasmon resonance analysis of the mechanism of binding of apoA-I to high density lipoprotein particles. Journal of Lipid Research, 2010, 51, 606-617.	2.0	35
42	Disruption of the C-terminal helix by single amino acid deletion is directly responsible for impaired cholesterol efflux ability of apolipoprotein A-I Nichinan. Journal of Lipid Research, 2010, 51, 809-818.	2.0	22
43	High Density Lipoprotein Structure–Function and Role in Reverse Cholesterol Transport. Sub-Cellular Biochemistry, 2010, 51, 183-227.	1.0	204
44	Influence of Apolipoprotein (Apo) A-I Structure on Nascent High Density Lipoprotein (HDL) Particle Size Distribution. Journal of Biological Chemistry, 2010, 285, 31965-31973.	1.6	43
45	Pathways by Which Reconstituted High-Density Lipoprotein Mobilizes Free Cholesterol From Whole Body and From Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 526-532.	1.1	41
46	Molecular Basis for the Differences in Lipid and Lipoprotein Binding Properties of Human Apolipoproteins E3 and E4. Biochemistry, 2010, 49, 10881-10889.	1.2	56
47	Structural and functional consequences of the Milano mutation (R173C) in human apolipoprotein A-I. Journal of Lipid Research, 2009, 50, 1409-1419.	2.0	59
48	Influence of class B scavenger receptors on cholesterol flux across the brush border membrane and intestinal absorption. Journal of Lipid Research, 2009, 50, 2235-2244.	2.0	37
49	Effects of acceptor composition and mechanism of ABCG1-mediated cellular free cholesterol efflux. Journal of Lipid Research, 2009, 50, 275-284.	2.0	144
50	Macrophage Reverse Cholesterol Transport in Mice Expressing ApoA-I Milano. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1496-1501.	1.1	53
51	Helical structure and stability in human apolipoprotein A-I by hydrogen exchange and mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19005-19010.	3.3	139
52	Mechanism underlying apolipoprotein E (ApoE) isoformâ€dependent lipid efflux from neural cells in culture. Journal of Neuroscience Research, 2009, 87, 2498-2508.	1.3	67
53	Molecular Mechanism of Apolipoprotein E Binding to Lipoprotein Particles. Biochemistry, 2009, 48, 3025-3032.	1.2	50
54	Interaction between the N- and C-Terminal Domains Modulates the Stability and Lipid Binding of Apolipoprotein A-I. Biochemistry, 2009, 48, 2529-2537.	1.2	41

#	Article	IF	CITATIONS
55	Structure–function properties of the apoE-dependent COX-2 pathway in vascular smooth muscle cells. Atherosclerosis, 2008, 196, 201-209.	0.4	15
56	Influence of Tertiary Structure Domain Properties on the Functionality of Apolipoprotein A-lâ€. Biochemistry, 2008, 47, 2172-2180.	1.2	42
57	Conformational Flexibility of the N-Terminal Domain of Apolipoprotein A-I Bound to Spherical Lipid Particles. Biochemistry, 2008, 47, 11340-11347.	1.2	47
58	Contributions of the Carboxyl-Terminal Helical Segment to the Self-Association and Lipoprotein Preferences of Human Apolipoprotein E3 and E4 Isoforms. Biochemistry, 2008, 47, 2968-2977.	1.2	51
59	Role of the N- and C-Terminal Domains in Binding of Apolipoprotein E Isoforms to Heparan Sulfate and Dermatan Sulfate: A Surface Plasmon Resonance Study. Biochemistry, 2008, 47, 6702-6710.	1.2	35
60	CD36 Mediates Both Cellular Uptake of Very Long Chain Fatty Acids and Their Intestinal Absorption in Mice. Journal of Biological Chemistry, 2008, 283, 13108-13115.	1.6	124
61	Characterization and properties of $pre\hat{l}^2$ -HDL particles formed by ABCA1-mediated cellular lipid efflux to apoA-I. Journal of Lipid Research, 2008, 49, 1006-1014.	2.0	84
62	Lipoprotein structure., 2008,, 485-506.		34
63	List of contributors**Authors' names are followed by the starting page number(s) of their contribution(s) , 2008, , vii-x.		0
64	Effects of amino acid substitutions at glycine 420 on SR-BI cholesterol transport function. Journal of Lipid Research, 2007, 48, 1386-1395.	2.0	7
65	Wild-Type ApoA-I and the Milano Variant Have Similar Abilities to Stimulate Cellular Lipid Mobilization and Efflux. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2022-2029.	1.1	46
66	The roles of different pathways in the release of cholesterol from macrophages. Journal of Lipid Research, 2007, 48, 2453-2462.	2.0	274
67	ABCA1-Induced Cell Surface Binding Sites for ApoA-I. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1603-1609.	1.1	122
68	Mechanism of ATP-binding Cassette Transporter A1-mediated Cellular Lipid Efflux to Apolipoprotein A-I and Formation of High Density Lipoprotein Particles. Journal of Biological Chemistry, 2007, 282, 25123-25130.	1.6	300
69	Multiple plasma membrane receptors but not NPC1L1 mediate high-affinity, ezetimibe-sensitive cholesterol uptake into the intestinal brush border membrane. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 1140-1147.	1.2	49
70	The C-Terminal Lipid-Binding Domain of Apolipoprotein E Is a Highly Efficient Mediator of ABCA1-Dependent Cholesterol Efflux that Promotes the Assembly of High-Density Lipoproteinsâ€. Biochemistry, 2007, 46, 2583-2593.	1.2	99
71	Characterization of nascent HDL particles and microparticles formed by ABCA1-mediated efflux of cellular lipids to apoA-I. Journal of Lipid Research, 2006, 47, 832-843.	2.0	168
72	Contributions of the N- and C-Terminal Helical Segments to the Lipid-Free Structure and Lipid Interaction of Apolipoprotein A-lâ€. Biochemistry, 2006, 45, 10351-10358.	1.2	69

#	Article	IF	CITATIONS
73	Effect of Carboxyl-Terminal Truncation on Structure and Lipid Interaction of Human Apolipoprotein E4â€. Biochemistry, 2006, 45, 4240-4247.	1.2	42
74	Mechanisms of cholesterol-lowering effects of dietary insoluble fibres: relationships with intestinal and hepatic cholesterol parameters. British Journal of Nutrition, 2005, 94, 331-337.	1.2	120
75	Two-step Mechanism of Binding of Apolipoprotein E to Heparin. Journal of Biological Chemistry, 2005, 280, 5414-5422.	1.6	73
76	Effects of the Core Lipid on the Energetics of Binding of ApoA-I to Model Lipoprotein Particles of Different Sizesâ€. Biochemistry, 2005, 44, 10689-10695.	1.2	13
77	Class B Scavenger Receptor-Mediated Intestinal Absorption of Dietary β-Carotene and Cholesterolâ€. Biochemistry, 2005, 44, 4517-4525.	1.2	259
78	Structural Analysis of Lipoprotein E Particlesâ€. Biochemistry, 2005, 44, 12525-12534.	1.2	39
79	Identification of an Apolipoprotein A-I Structural Element That Mediates Cellular Cholesterol Efflux and Stabilizes ATP Binding Cassette Transporter A1. Journal of Biological Chemistry, 2004, 279, 24044-24052.	1.6	62
80	Scavenger Receptor BI (SR-BI) Clustered on Microvillar Extensions Suggests that This Plasma Membrane Domain Is a Way Station for Cholesterol Trafficking between Cells and High-Density Lipoprotein. Molecular Biology of the Cell, 2004, 15, 384-396.	0.9	89
81	Aromatic Residue Position on the Nonpolar Face of Class A Amphipathic Helical Peptides Determines Biological Activity. Journal of Biological Chemistry, 2004, 279, 26509-26517.	1.6	72
82	\hat{l}_{\pm} -Helix Formation Is Required for High Affinity Binding of Human Apolipoprotein A-I to Lipids. Journal of Biological Chemistry, 2004, 279, 20974-20981.	1.6	103
83	Scavenger Receptor Class B Type I-mediated Cholesteryl Ester-selective Uptake and Efflux of Unesterified Cholesterol. Journal of Biological Chemistry, 2004, 279, 12448-12455.	1.6	83
84	Influence of ApoA-I Structure on the ABCA1-mediated Efflux of Cellular Lipids. Journal of Biological Chemistry, 2004, 279, 49931-49939.	1.6	71
85	Apolipoprotein A-I-stimulated Apolipoprotein E Secretion from Human Macrophages Is Independent of Cholesterol Efflux. Journal of Biological Chemistry, 2004, 279, 25966-25977.	1.6	40
86	Helix Orientation of the Functional Domains in Apolipoprotein E in Discoidal High Density Lipoprotein Particles. Journal of Biological Chemistry, 2004, 279, 14273-14279.	1.6	79
87	Structure of Human Apolipoprotein A-IV:  A Distinct Domain Architecture among Exchangeable Apolipoproteins with Potential Functional Implications. Biochemistry, 2004, 43, 10719-10729.	1.2	33
88	Contributions of domain structure and lipid interaction to the functionality of exchangeable human apolipoproteins. Progress in Lipid Research, 2004, 43, 350-380.	5.3	187
89	Antimitogenic effects of HDL and APOE mediated by Cox-2–dependent IP activation. Journal of Clinical Investigation, 2004, 113, 609-618.	3.9	41
90	Increased Low-Density Lipoprotein Oxidation and Impaired High-Density Lipoprotein Antioxidant Defense Are Associated With Increased Macrophage Homing and Atherosclerosis in Dyslipidemic Obese Mice. Circulation, 2003, 107, 1640-1646.	1.6	166

#	Article	IF	Citations
91	Effects of Apolipoprotein A-I on ATP-binding Cassette Transporter A1-mediated Efflux of Macrophage Phospholipid and Cholesterol. Journal of Biological Chemistry, 2003, 278, 42976-42984.	1.6	111
92	Importance of Different Pathways of Cellular Cholesterol Efflux. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 712-719.	1.1	460
93	A quantitative analysis of apolipoprotein binding to SR-BI: multiple binding sites for lipid-free and lipid-associated apolipoproteins. Journal of Lipid Research, 2003, 44, 1132-1142.	2.0	63
94	Characterization of the Heparin Binding Sites in Human Apolipoprotein E. Journal of Biological Chemistry, 2003, 278, 14782-14787.	1.6	74
95	Domain Structure and Lipid Interaction in Human Apolipoproteins A-I and E, a General Model. Journal of Biological Chemistry, 2003, 278, 23227-23232.	1.6	161
96	Effects of Polymorphism on the Lipid Interaction of Human Apolipoprotein E. Journal of Biological Chemistry, 2003, 278, 40723-40729.	1.6	76
97	High density lipoprotein structure. Frontiers in Bioscience - Landmark, 2003, 8, d1044-1054.	3.0	82
98	Effects of Enrichment of Fibroblasts with Unesterified Cholesterol on the Efflux of Cellular Lipids to Apolipoprotein A-I. Journal of Biological Chemistry, 2002, 277, 11811-11820.	1.6	45
99	Influence of apoE domain structure and polymorphism on the kinetics of phospholipid vesicle solubilization. Journal of Lipid Research, 2002, 43, 1688-1700.	2.0	87
100	Comparison of the stabilities and unfolding pathways of human apolipoprotein E isoforms by differential scanning calorimetry and circular dichroism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1584, 9-19.	1.2	72
101	Lipid Binding-induced Conformational Change in Human Apolipoprotein E. Journal of Biological Chemistry, 2001, 276, 40949-40954.	1.6	106
102	Scavenger Receptor Class B, Type I-mediated Uptake of Various Lipids into Cells. Journal of Biological Chemistry, 2001, 276, 43801-43808.	1.6	115
103	Arg123-Tyr166 Domain of Human ApoA-I Is Critical for HDL-Mediated Inhibition of Macrophage Homing and Early Atherosclerosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1977-1983.	1.1	50
104	New Insights into the Heparan Sulfate Proteoglycan-binding Activity of Apolipoprotein E. Journal of Biological Chemistry, 2001, 276, 39138-39144.	1.6	89
105	Effects of increasing hydrophobicity on the physical-chemical and biological properties of a class A amphipathic helical peptide. Journal of Lipid Research, 2001, 42, 1096-1104.	2.0	203
106	Effects of polymorphism on the microenvironment of the LDL receptor-binding region of human apoE. Journal of Lipid Research, 2001, 42, 894-901.	2.0	34
107	Effects of Lipid Interaction on the Lysine Microenvironments in Apolipoprotein E. Journal of Biological Chemistry, 2000, 275, 34459-34464.	1.6	51
108	Binding and Cross-linking Studies Show That Scavenger Receptor BI Interacts with Multiple Sites in Apolipoprotein A-I and Identify the Class A Amphipathic α-Helix as a Recognition Motif. Journal of Biological Chemistry, 2000, 275, 18897-18904.	1.6	102

#	Article	IF	CITATIONS
109	Differences in Stability among the Human Apolipoprotein E Isoforms Determined by the Amino-Terminal Domainâ€. Biochemistry, 2000, 39, 11657-11666.	1.2	289
110	Intestinal Sterol Absorption Mediated by Scavenger Receptors Is Competitively Inhibited by Amphipathic Peptides and Proteinsâ€. Biochemistry, 2000, 39, 12623-12631.	1.2	46
111	Efflux of Cholesterol from Different Cellular Poolsâ€. Biochemistry, 2000, 39, 4508-4517.	1.2	123
112	Apolipoprotein E–low density lipoprotein receptor interaction: influences of basic residue and amphipathic α-helix organization in the ligand. Journal of Lipid Research, 2000, 41, 1087-1095.	2.0	62
113	Apolipoprotein-mediated Plasma Membrane Microsolubilization. Journal of Biological Chemistry, 1999, 274, 2021-2028.	1.6	170
114	Mechanism of Scavenger Receptor Class B Type I-mediated Selective Uptake of Cholesteryl Esters from High Density Lipoprotein to Adrenal Cells. Journal of Biological Chemistry, 1999, 274, 20344-20350.	1.6	172
115	Kinetics and mechanism of exchange of apolipoprotein C-III molecules from very low density lipoprotein particles. BBA - Proteins and Proteomics, 1999, 1430, 302-312.	2.1	16
116	Induction of cellular cholesterol efflux to lipid-free apolipoprotein A-I by cAMP. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1438, 85-98.	1.2	84
117	Scavenger receptor Bl and cholesterol trafficking. Current Opinion in Lipidology, 1999, 10, 329-340.	1.2	164
118	Cell cholesterol efflux: integration of old and new observations provides new insights. Journal of Lipid Research, 1999, 40, 781-796.	2.0	436
119	Scavenger receptor BI (SR-BI) mediates free cholesterol flux independently of HDL tethering to the cell surface. Journal of Lipid Research, 1999, 40, 575-580.	2.0	191
120	Structural and metabolic consequences of liposome–lipoprotein interactions. Advanced Drug Delivery Reviews, 1998, 32, 31-43.	6.6	43
121	Studies of Synthetic Peptides of Human Apolipoprotein A-I Containing Tandem Amphipathic α-Helixes. Biochemistry, 1998, 37, 10313-10324.	1.2	75
122	Apolipoprotein B-100 Conformation and Particle Surface Charge in Human LDL Subspecies: Implication for LDL Receptor Interactionâ€. Biochemistry, 1998, 37, 12867-12874.	1.2	124
123	Identification of a Receptor Mediating Absorption of Dietary Cholesterol in the Intestineâ€. Biochemistry, 1998, 37, 17843-17850.	1.2	231
124	Mechanisms of high density lipoprotein-mediated efflux of cholesterol from cell plasma membranes. Atherosclerosis, 1998, 137, S13-S17.	0.4	76
125	Scavenger Receptor Class B Type I as a Mediator of Cellular Cholesterol Efflux to Lipoproteins and Phospholipid Acceptors. Journal of Biological Chemistry, 1998, 273, 5599-5606.	1.6	265
126	Removal of cellular cholesterol by pre-Î ² -HDL involves plasma membrane microsolubilization. Journal of Lipid Research, 1998, 39, 1918-1928.	2.0	81

#	Article	IF	CITATIONS
127	Dietary modification of high density lipoprotein phospholipid and influence on cellular cholesterol efflux. Journal of Lipid Research, 1998, 39, 2065-2075.	2.0	27
128	Scavenger Receptor BI Promotes High Density Lipoprotein-mediated Cellular Cholesterol Efflux. Journal of Biological Chemistry, 1997, 272, 20982-20985.	1.6	626
129	Truncation of the Amino Terminus of Human Apolipoprotein A-I Substantially Alters Only the Lipid-Free Conformation. Biochemistry, 1997, 36, 288-300.	1.2	117
130	The uptake of cholesterol at the small-intestinal brush border membrane is inhibited by apolipoproteins. FEBS Letters, 1997, 411, 7-11.	1.3	21
131	Lipoproteins and Cellular Cholesterol Homeostasis. Sub-Cellular Biochemistry, 1997, 28, 235-276.	1.0	22
132	Remodeling and Shuttling. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 383-393.	1.1	45
133	Cellular Cholesterol Efflux Mediated by Cyclodextrins. Journal of Biological Chemistry, 1996, 271, 16026-16034.	1.6	406
134	Apolipoprotein A-I Structural Modification and the Functionality of Reconstituted High Density Lipoprotein Particles in Cellular Cholesterol Efflux. Journal of Biological Chemistry, 1996, 271, 23792-23798.	1.6	46
135	Only the Two End Helixes of Eight Tandem Amphipathic Helical Domains of Human Apo A-I Have Significant Lipid Affinity. Arteriosclerosis, Thrombosis, and Vascular Biology, 1996, 16, 328-338.	1.1	177
136	Effects of Acceptor Particle Size on the Efflux of Cellular Free Cholesterol. Journal of Biological Chemistry, 1995, 270, 17106-17113.	1.6	116
137	Effect of the Cholesterol Content of Reconstituted LpA-I on Lecithin:Cholesterol Acyltransferase Activity. Journal of Biological Chemistry, 1995, 270, 5151-5157.	1.6	35
138	Effect of the Arrangement of Tandem Repeating Units of Class A Amphipathic \hat{l}_{\pm} -Helixes on Lipid Interaction. Journal of Biological Chemistry, 1995, 270, 1602-1611.	1.6	32
139	The Effect of High Density Lipoprotein Phospholipid Acyl Chain Composition on the Efflux of Cellular Free Cholesterol. Journal of Biological Chemistry, 1995, 270, 5882-5890.	1.6	139
140	Efflux of Newly Synthesized Cholesterol and Biosynthetic Sterol Intermediates from Cells. Journal of Biological Chemistry, 1995, 270, 25037-25046.	1.6	32
141	Effects of the Neutral Lipid Content of High Density Lipoprotein on Apolipoprotein A-I Structure and Particle Stability. Journal of Biological Chemistry, 1995, 270, 26910-26917.	1.6	101
142	Molecular Determinants of Plasma Cholesteryl Ester Transfer Protein Binding to High Density Lipoproteins. Journal of Biological Chemistry, 1995, 270, 11532-11542.	1.6	40
143	Cellular Cholesterol Efflux Mediated by Cyclodextrins. Journal of Biological Chemistry, 1995, 270, 17250-17256.	1.6	723
144	Efflux of cellular cholesterol and phospholipid to lipid-free apolipoproteins and class A amphipathic peptides. Biochemistry, 1995, 34, 7955-7965.	1.2	199

#	Article	IF	CITATIONS
145	Effect of end group blockage on the properties of a class A amphipathic helical peptide. Proteins: Structure, Function and Bioinformatics, 1993, 15, 349-359.	1.5	115
146	Effects of membrane lipids and -proteins and cytoskeletal proteins on the kinetics of cholesterol exchange between high density lipoprotein and human red blood cells, ghosts and microvesicles. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1111, 103-110.	1.4	8
147	A technique to estimate the apparent surface pressure of emulsion particles using apolipoproteins as probes. Advances in Colloid and Interface Science, 1992, 41, 1-8.	7.0	11
148	Effects of apolipoprotein structure on the kinetics of apolipoprotein transfer between phospholipid vesicles. Lipids and Lipid Metabolism, 1991, 1081, 220-228.	2.6	12
149	Cholesterol transport between cells and high-density lipoproteins. Lipids and Lipid Metabolism, 1991, 1085, 273-298.	2.6	410
150	Effects of apolipoproteins on the kinetics of cholesterol exchange. Biochemistry, 1991, 30, 866-873.	1.2	27
151	Cholesterol efflux from arterial wall cells. Current Opinion in Lipidology, 1991, 2, 288-294.	1.2	17
152	Kinetics and mechanism of transfer of reduced and carboxymethylated apolipoprotein A-II between phospholipid vesicles. Biochemistry, 1990, 29, 3472-3479.	1.2	7
153	Effects of membrane lipid composition on the kinetics of cholesterol exchange between lipoproteins and different species of red blood cells. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1027, 85-92.	1.4	45
154	Effect of substrate physical state on the activity of acid cholesteryl ester hydrolase. Lipids and Lipid Metabolism, 1990, 1042, 301-309.	2.6	14
155	The surface properties of apolipoproteins A-I and A-II at the lipid/water interface. Lipids and Lipid Metabolism, 1989, 1004, 300-308.	2.6	54
156	Molecular packing of high-density and low-density lipoprotein surface lipids and apolipoprotein A-l binding. Biochemistry, 1989, 28, 1126-1133.	1.2	90
157	Physical state of cholesteryl esters deposited in cultured macrophages. Biochemistry, 1988, 27, 3640-3646.	1.2	21
158	Effects of lipid composition and packing on the adsorption of apolipoprotein A-I to lipid monolayers. Biochemistry, 1988, 27, 7155-7162.	1.2	76
159	A comparison of the surface activities of human apolipoproteins A-I and A-II at the air/water interface. Lipids and Lipid Metabolism, 1988, 959, 229-237.	2.6	53
160	Influence of molecular packing and phospholipid type on rates of cholesterol exchange. Biochemistry, 1988, 27, 3416-3423.	1.2	231
161	Mechanisms and consequences of cellular cholesterol exchange and transfer. BBA - Biomembranes, 1987, 906, 223-276.	7.9	495
162	Interaction between the 35 kDa apolipoprotein of pulmonary surfactant and saturated phosphatidylcholines. Effects of temperature. Lipids and Lipid Metabolism, 1986, 879, 1-13.	2.6	27

#	Article	IF	CITATIONS
163	Hydrolysis of lipid monolayers and the substrate specificity of hepatic lipase. Lipids and Lipid Metabolism, 1986, 876, 233-242.	2.6	44
164	Packing of cholesterol molecules in human low-density lipoprotein. Biochemistry, 1986, 25, 1562-1568.	1.2	120
165	Reverse cholesterol transport. Methods in Enzymology, 1986, 129, 628-644.	0.4	78
166	[22] Studies of apolipoproteins at the air-water interface. Methods in Enzymology, 1986, 128, 387-403.	0.4	53
167	Mechanism of the hepatic lipase-induced accumulation of high-density lipoprotein cholesterol by cells in culture. Biochemistry, 1985, 24, 3693-3701.	1.2	128
168	Closing Comments and Summary. Experimental Lung Research, 1984, 6, 271-272.	0.5	0
169	Packing of cholesterol molecules in human high-density lipoproteins. Biochemistry, 1984, 23, 1130-1138.	1.2	46
170	Influence of cholesterol on bilayers of ester- and ether-linked phospholipids Permeability and 13C-nuclear magnetic resonance measurements. Biochimica Et Biophysica Acta - Biomembranes, 1984, 772, 117-126.	1.4	60
171	Cholesterol transfer from small and large unilamellar vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1984, 776, 21-26.	1.4	75
172	Kinetics of phosphatidylcholine and lysophosphatidylcholine exchange between unilamellar vesicles. Biochemistry, 1984, 23, 4624-4630.	1.2	144
173	The helical hydrophobic moments and surface activities of serum apolipoproteins. Lipids and Lipid Metabolism, 1983, 754, 227-230.	2.6	33
174	A comparison of the surface activities of rat plasma apolipoproteins C-II, C-III-0, C-III-3. Lipids and Lipid Metabolism, 1983, 751, 470-473.	2.6	24
175	Cholesterol desorption from clusters of phosphatidylcholine and cholesterol in unilamellar vesicle bilayers during lipid transfer or exchange. Biochemistry, 1982, 21, 4053-4059.	1.2	76
176	Location and motion of free cholesterol molecules in high density lipoprotein. Biochemical and Biophysical Research Communications, 1981, 100, 1735-1742.	1.0	12
177	Ion-Binding to Phospholipids. Interaction of Calcium with Phosphatidylserine. FEBS Journal, 1976, 62, 335-344.	0.2	137
178	Interaction of Apoprotein from Porcine High-Density Lipoprotein with Dimyristoyl Lecithin. 2. Nature of Lipid-Protein Interaction. FEBS Journal, 1976, 64, 549-563.	0.2	75
179	Ion-Binding to Phospholipids. Interaction of Calcium and Lanthanide Ions with Phosphatidylcholine (Lecithin). FEBS Journal, 1975, 58, 133-144.	0.2	157
180	Structures of Aqueous Dispersions of Phosphatidylserine. Journal of Biological Chemistry, 1973, 248, 8585-8591.	1.6	47