Chiara Mozzetta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5816403/publications.pdf

Version: 2024-02-01

304743 2,715 38 22 h-index citations papers

34 g-index 41 41 41 4158 docs citations times ranked citing authors all docs

377865

#	Article	IF	Citations
1	TNF/p38î±/Polycomb Signaling to Pax7 Locus in Satellite Cells Links Inflammation to the Epigenetic Control of Muscle Regeneration. Cell Stem Cell, 2010, 7, 455-469.	11.1	346
2	Functional and morphological recovery of dystrophic muscles in mice treated with deacetylase inhibitors. Nature Medicine, 2006, 12, 1147-1150.	30.7	294
3	HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19183-19187.	7.1	234
4	The Histone H3 Lysine 9 Methyltransferases G9a and GLP Regulate Polycomb Repressive Complex 2-Mediated Gene Silencing. Molecular Cell, 2014, 53, 277-289.	9.7	214
5	Fibroadipogenic progenitors mediate the ability of HDAC inhibitors to promote regeneration in dystrophic muscles of young, but not old Mdx mice. EMBO Molecular Medicine, 2013, 5, 626-639.	6.9	201
6	Functional Interdependence at the Chromatin Level between the MKK6/p38 and IGF1/PI3K/AKT Pathways during Muscle Differentiation. Molecular Cell, 2007, 28, 200-213.	9.7	174
7	Sound of silence: the properties and functions of repressive Lys methyltransferases. Nature Reviews Molecular Cell Biology, 2015, 16, 499-513.	37.0	161
8	Fibro–Adipogenic Progenitors Cross-Talk in Skeletal Muscle: The Social Network. Frontiers in Physiology, 2019, 10, 1074.	2.8	150
9	HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles. Genes and Development, 2014, 28, 841-857.	5.9	132
10	Preclinical Studies in the mdx Mouse Model of Duchenne Muscular Dystrophy with the Histone Deacetylase Inhibitor Givinostat. Molecular Medicine, 2013, 19, 79-87.	4.4	116
11	Chromatin regulated interchange between polycomb repressive complex 2 (PRC2)-Ezh2 and PRC2-Ezh1 complexes controls myogenin activation in skeletal muscle cells. Epigenetics and Chromatin, 2011, 4, 16.	3.9	113
12	Lamin A/C sustains PcG protein architecture, maintaining transcriptional repression at target genes. Journal of Cell Biology, 2015, 211, 533-551.	5.2	96
13	Histone Deacetylase Inhibitors in the Treatment of Muscular Dystrophies: Epigenetic Drugs for Genetic Diseases. Molecular Medicine, 2011, 17, 457-465.	4.4	75
14	Nitric oxide deficiency determines global chromatin changes in Duchenne muscular dystrophy. FASEB Journal, 2009, 23, 2131-2141.	0.5	69
15	Regenerative pharmacology in the treatment of genetic diseases: The paradigm of muscular dystrophy. International Journal of Biochemistry and Cell Biology, 2009, 41, 701-710.	2.8	37
16	Selective control of <i>Pax7</i> expression by TNF-activated p38î±/polycomb repressive complex 2 (PRC2) signaling during muscle satellite cell differentiation. Cell Cycle, 2011, 10, 191-198.	2.6	37
17	Autocrine activation of nicotinic acetylcholine receptors contributes to Ca2+spikes in mouse myotubes during myogenesis. Journal of Physiology, 2005, 568, 171-180.	2.9	34
18	Histone deacetylase inhibitors: a potential epigenetic treatment for Duchenne muscular dystrophy. Epigenomics, 2014, 6, 547-560.	2.1	32

#	Article	IF	CITATIONS
19	Dysfunctional polycomb transcriptional repression contributes to lamin A/C–dependent muscular dystrophy. Journal of Clinical Investigation, 2020, 130, 2408-2421.	8.2	32
20	Prdm16-mediated H3K9 methylation controls fibro-adipogenic progenitors identity during skeletal muscle repair. Science Advances, 2021, 7, .	10.3	30
21	Functional Crosstalk Between Lysine Methyltransferases on Histone Substrates: The Case of G9A/GLP and Polycomb Repressive Complex 2. Antioxidants and Redox Signaling, 2015, 22, 1365-1381.	5.4	26
22	Epigenetic regulation of Wnt7b expression by the cis-acting long noncoding RNA Lnc-Rewind in muscle stem cells. ELife, 2021, 10 , .	6.0	23
23	Acetylcholineâ€induced neuronal differentiation: muscarinic receptor activation regulates EGRâ€1 and REST expression in neuroblastoma cells. Journal of Neurochemistry, 2009, 108, 821-834.	3.9	21
24	The mechanisms and possible sites of acetylcholine release during chick primary sensory neuron differentiation. Life Sciences, 2012, 91, 783-788.	4.3	15
25	Statins interfere with the attachment of <i>S. cerevisiae</i> mtDNA to the inner mitochondrial membrane. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 129-138.	5.2	9
26	Synaptic alterations as a neurodevelopmental trait of Duchenne muscular dystrophy. Neurobiology of Disease, 2022, 168, 105718.	4.4	9
27	Challenging the "chromatin hypothesis―of cardiac laminopathies with LMNA mutant iPS cells. Journal of Cell Biology, 2019, 218, 2826-2828.	5. 2	8
28	Epigenetic control of muscle stem cells: time for a new dimension. Trends in Genetics, 2022, 38, 501-513.	6.7	8
29	Isolation and Culture of Muscle Stem Cells. Methods in Molecular Biology, 2016, 1480, 311-322.	0.9	7
30	Editorial: Epigenetic Regulation of Stem Cell Plasticity in Tissue Regeneration and Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 82.	3.7	4
31	Correction for Colussi et al., HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1679-1679.	7.1	2
32	Single Myofiber Isolation and Culture from a Murine Model of Emery-Dreifuss Muscular Dystrophy in Early Post-Natal Development. Journal of Visualized Experiments, 2020, , .	0.3	2
33	Muscle Damage in Dystrophic mdx Mice Is Influenced by the Activity of Ca2+-Activated KCa3.1 Channels. Life, 2022, 12, 538.	2.4	2
34	Epigenetic Regulation of Muscle Stem Cells During Skeletal Muscle Regeneration and Disease. , 2019 , , $309-332$.		1
35	Identification and in vitro characterization of a new series of potent and highly selective G9a inhibitors as novel anti-fibroadipogenic agents. Bioorganic and Medicinal Chemistry Letters, 2022, 72, 128858.	2.2	1
36	T.P.2 Givinostat improves histological and functional parameters in mdx mice dose and concentration dependently. Neuromuscular Disorders, 2012, 22, 847.	0.6	0

3

#	Article	IF	CITATIONS
37	The Rna Helicase DDX5 Cooperates with EHMT2 to Sustain Alveolar Rhabdomyosarcoma Growth. SSRN Electronic Journal, 0, , .	0.4	O
38	Targeting the Expression of Long Noncoding RNAs in Murine Satellite Cells from Single Myofibers. Bio-protocol, 2021, 11, e4209.	0.4	0