Amelia K Pinto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5816247/publications.pdf

Version: 2024-02-01

68 papers

3,089 citations

29 h-index 53 g-index

79 all docs

79 docs citations

79 times ranked 4621 citing authors

#	Article	IF	CITATIONS
1	Attrition of T Cell Memory. Immunity, 1999, 11, 733-742.	14.3	261
2	T cell immunodominance and maintenance of memory regulated by unexpectedly cross-reactive pathogens. Nature Immunology, 2002, 3, 627-634.	14.5	236
3	Four Distinct Patterns of Memory CD8 T Cell Responses to Chronic Murine Cytomegalovirus Infection. Journal of Immunology, 2006, 177, 450-458.	0.8	214
4	Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood-brain barrier. Science Translational Medicine, 2015, 7, 284ra59.	12.4	197
5	Zika virus pathogenesis in rhesus macaques is unaffected by pre-existing immunity to dengue virus. Nature Communications, 2017, 8, 15674.	12.8	178
6	SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of angiotensin II receptor signaling in epithelial cells. PLoS Pathogens, 2020, 16, e1009128.	4.7	157
7	Innate Immunity to Viruses: Control of Vaccinia Virus Infection by γδT Cells. Journal of Immunology, 2001, 166, 6784-6794.	0.8	109
8	A Temporal Role Of Type I Interferon Signaling in CD8+ T Cell Maturation during Acute West Nile Virus Infection. PLoS Pathogens, 2011, 7, e1002407.	4.7	95
9	Beta Interferon Controls West Nile Virus Infection and Pathogenesis in Mice. Journal of Virology, 2011, 85, 7186-7194.	3.4	93
10	Single-Dose Intranasal Administration of AdCOVID Elicits Systemic and Mucosal Immunity against SARS-CoV-2 and Fully Protects Mice from Lethal Challenge. Vaccines, 2021, 9, 881.	4.4	86
11	c-Myc-induced transcription factor AP4 is required for host protection mediated by CD8+ T cells. Nature Immunology, 2014, 15, 884-893.	14.5	85
12	CD4+T cells mediate protection against Zika associated severe disease in a mouse model of infection. PLoS Pathogens, 2018, 14, e1007237.	4.7	77
13	CD8 ⁺ T Cells Use TRAIL To Restrict West Nile Virus Pathogenesis by Controlling Infection in Neurons. Journal of Virology, 2012, 86, 8937-8948.	3.4	66
14	The lectin pathway of complement activation contributes to protection from West Nile virus infection. Virology, 2011, 412, 101-109.	2.4	63
15	Deficient IFN Signaling by Myeloid Cells Leads to MAVS-Dependent Virus-Induced Sepsis. PLoS Pathogens, 2014, 10, e1004086.	4.7	63
16	Viral Interference with Antigen Presentation Does Not Alter Acute or Chronic CD8 T Cell Immunodominance in Murine Cytomegalovirus Infection. Journal of Immunology, 2007, 178, 7235-7241.	0.8	61
17	Potent Zika and dengue cross-neutralizing antibodies induced by Zika vaccination in a dengue-experienced donor. Nature Medicine, 2020, 26, 228-235.	30.7	61
18	A Hydrogen Peroxide-Inactivated Virus Vaccine Elicits Humoral and Cellular Immunity and Protects against Lethal West Nile Virus Infection in Aged Mice. Journal of Virology, 2013, 87, 1926-1936.	3.4	60

#	Article	IF	CITATIONS
19	Coordinated Function of Murine Cytomegalovirus Genes Completely Inhibits CTL Lysis. Journal of Immunology, 2006, 177, 3225-3234.	0.8	59
20	Pattern Recognition Receptor MDA5 Modulates CD8 ⁺ T Cell-Dependent Clearance of West Nile Virus from the Central Nervous System. Journal of Virology, 2013, 87, 11401-11415.	3.4	50
21	Murine Cytomegalovirus Interference with Antigen Presentation Contributes to the Inability of CD8 T Cells To Control Virus in the Salivary Gland. Journal of Virology, 2006, 80, 4200-4202.	3.4	45
22	Identification of Protective CD8 T Cell Responses in a Mouse Model of Zika Virus Infection. Frontiers in Immunology, 2019, 10, 1678.	4.8	42
23	Defining New Therapeutics Using a More Immunocompetent Mouse Model of Antibody-Enhanced Dengue Virus Infection. MBio, 2015, 6, e01316-15.	4.1	40
24	Human and Murine IFIT1 Proteins Do Not Restrict Infection of Negative-Sense RNA Viruses of the Orthomyxoviridae, Bunyaviridae, and Filoviridae Families. Journal of Virology, 2015, 89, 9465-9476.	3.4	38
25	Oropouche Virus Infection and Pathogenesis Are Restricted by MAVS, IRF-3, IRF-7, and Type I Interferon Signaling Pathways in Nonmyeloid Cells. Journal of Virology, 2015, 89, 4720-4737.	3.4	37
26	A Dengue Virus Serotype 1 mRNA-LNP Vaccine Elicits Protective Immune Responses. Journal of Virology, 2021, 95, .	3.4	37
27	RAE1Î μ Ligand Expressed on Pancreatic Islets Recruits NKG2D Receptor-Expressing Cytotoxic T Cells Independent of T Cell Receptor Recognition. Immunity, 2012, 36, 132-141.	14.3	36
28	Comparing the Kinetics of NK Cells, CD4, and CD8 T Cells in Murine Cytomegalovirus Infection. Journal of Immunology, 2011, 187, 1385-1392.	0.8	35
29	Viral Interference with Antigen Presentation to CD8+T Cells: Lessons from Cytomegalovirus. Viral Immunology, 2005, 18, 434-444.	1.3	34
30	Murine norovirus infection does not cause major disruptions in the murine intestinal microbiota. Microbiome, 2013, 1, 7.	11.1	32
31	Time elapsed between Zika and dengue virus infections affects antibody and T cell responses. Nature Communications, 2019, 10, 4316.	12.8	31
32	Interferon Regulatory Factor 5-Dependent Immune Responses in the Draining Lymph Node Protect against West Nile Virus Infection. Journal of Virology, 2014, 88, 11007-11021.	3.4	24
33	mRNA induced expression of human angiotensin-converting enzyme 2 in mice for the study of the adaptive immune response to severe acute respiratory syndrome coronavirus 2. PLoS Pathogens, 2020, 16, e1009163.	4.7	24
34	Effects of Acute and Chronic Murine Norovirus Infections on Immune Responses and Recovery from Friend Retrovirus Infection. Journal of Virology, 2009, 83, 13037-13041.	3.4	22
35	Murine Norovirus Infection Has No Significant Effect on Adaptive Immunity to Vaccinia Virus or Influenza A Virus. Journal of Virology, 2009, 83, 7357-7360.	3.4	22
36	Interferon-Regulatory Factor 5-Dependent Signaling Restricts Orthobunyavirus Dissemination to the Central Nervous System. Journal of Virology, 2016, 90, 189-205.	3.4	22

#	Article	IF	CITATIONS
37	Function Is More Reliable than Quantity to Follow Up the Humoral Response to the Receptor-Binding Domain of SARS-CoV-2-Spike Protein after Natural Infection or COVID-19 Vaccination. Viruses, 2021, 13, 1972.	3.3	22
38	Oxidized Lipoproteins Promote Resistance to Cancer Immunotherapy Independent of Patient Obesity. Cancer Immunology Research, 2021, 9, 214-226.	3.4	18
39	Mouse Models of Heterologous Flavivirus Immunity: A Role for Cross-Reactive T Cells. Frontiers in Immunology, 2019, 10, 1045.	4.8	17
40	Effective control of early Zika virus replication by Dengue immunity is associated to the length of time between the 2 infections but not mediated by antibodies. PLoS Neglected Tropical Diseases, 2020, 14, e0008285.	3.0	17
41	The Serological Sciences Network (SeroNet) for COVID-19: Depth and Breadth of Serology Assays and Plans for Assay Harmonization. MSphere, 2022, 7, .	2.9	16
42	Isolation and Quantification of Zika Virus from Multiple Organs in a Mouse. Journal of Visualized Experiments, 2019, , .	0.3	15
43	Immunogenicity and Efficacy of a Recombinant Human Adenovirus Type 5 Vaccine against Zika Virus. Vaccines, 2020, 8, 170.	4.4	14
44	A novel Tâ€cell receptor mimic defines dendritic cells that present an immunodominant West Nile virus epitope in mice. European Journal of Immunology, 2014, 44, 1936-1946.	2.9	13
45	The small molecule AZD6244 inhibits dengue virus replication in vitro and protects against lethal challenge in a mouse model. Archives of Virology, 2020, 165, 671-681.	2.1	13
46	Obesity Enhances Disease Severity in Female Mice Following West Nile Virus Infection. Frontiers in Immunology, 2021, 12, 739025.	4.8	11
47	The Role of NKG2D Signaling in Inhibition of Cytotoxic T-Lymphocyte Lysis by the Murine Cytomegalovirus Immunoevasin <i>m152</i> /ip40. Journal of Virology, 2007, 81, 12564-12571.	3.4	9
48	Residues in the PB2 and PA genes contribute to the pathogenicity of avian H7N3 influenza A virus in DBA/2 mice. Virology, 2016, 494, 89-99.	2.4	9
49	Balanced T and B cell responses are required for immune protection against Powassan virus in virus-like particle vaccination. Cell Reports, 2022, 38, 110388.	6.4	9
50	A North American H7N3 Influenza Virus Supports Reassortment with 2009 Pandemic H1N1 and Induces Disease in Mice without Prior Adaptation. Journal of Virology, 2016, 90, 4796-4806.	3.4	8
51	Plasmalogen Loss in Sepsis and SARS-CoV-2 Infection. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	7
52	Human iPSC-Derived Neuronal Cells From CTBP1-Mutated Patients Reveal Altered Expression of Neurodevelopmental Gene Networks. Frontiers in Neuroscience, 2020, 14, 562292.	2.8	6
53	Prior Heterologous Flavivirus Exposure Results in Reduced Pathogenesis in a Mouse Model of Zika Virus Infection. Journal of Virology, 2021, 95, e0057321.	3.4	6
54	The Ability of Zika virus Intravenous Immunoglobulin to Protect From or Enhance Zika Virus Disease. Frontiers in Immunology, 2021, 12, 717425.	4.8	6

#	Article	IF	CITATIONS
55	Selective estrogen receptor modulator, tamoxifen, inhibits Zika virus infection. Journal of Medical Virology, 2021, 93, 6155-6162.	5.0	5
56	Roles of antiviral sensing and type I interferon signaling in the restriction of SARS-CoV-2 replication. IScience, 2021, , 103553.	4.1	5
57	Corticosteroid treatment in COVID-19 modulates host inflammatory responses and transcriptional signatures of immune dysregulation. Journal of Leukocyte Biology, 2021, 110, 1225-1239.	3.3	4
58	The Temporal Role of Cytokines in Flavivirus Protection and Pathogenesis. Current Clinical Microbiology Reports, 2019, 6, 25-33.	3.4	3
59	Current Flavivirus Research Important for Vaccine Development. Vaccines, 2020, 8, 477.	4.4	2
60	Tamoxifen as a Zika Virus Therapeutic. FASEB Journal, 2021, 35, .	0.5	1
61	Diagnostic differentiation of Zika and dengue virus exposure by analyzing T cell receptor sequences from peripheral blood of infected HLA-A2 transgenic mice. PLoS Neglected Tropical Diseases, 2020, 14, e0008896.	3.0	1
62	Hidden death gene in †flu. Trends in Microbiology, 2002, 10, 65.	7.7	0
63	Interfering with viral neuroinvasion. Science Signaling, 2015, 8, .	3.6	0
64	Title is missing!. , 2020, 16, e1009163.		0
65	Title is missing!. , 2020, 16, e1009163.		O
66	Title is missing!. , 2020, 16, e1009163.		0
67	Title is missing!. , 2020, 16, e1009163.		0
68	Titration and neutralizing antibody quantification by focus forming assay for Powassan virus. STAR Protocols, 2022, 3, 101473.	1.2	0