Federico GonzÃ;lez Grassi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5816175/publications.pdf

Version: 2024-02-01

28 papers 5,514 citations

304743 22 h-index 454955 30 g-index

33 all docs 33 docs citations

times ranked

33

7621 citing authors

#	Article	IF	Citations
1	Fine-tuned KDM1A alternative splicing regulates human cardiomyogenesis through an enzymatic-independent mechanism. IScience, 2022, , 104665.	4.1	6
2	Studying Kidney Disease Using Tissue and Genome Engineering in Human Pluripotent Stem Cells. Nephron, 2018, 138, 48-59.	1.8	10
3	TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells. Nature Genetics, 2018, 50, 83-95.	21.4	156
4	DICER1 Is Essential for Self-Renewal of Human Embryonic Stem Cells. Stem Cell Reports, 2018, 11, 616-625.	4.8	24
5	Reorganisation of Hoxd regulatory landscapes during the evolution of a snake-like body plan. ELife, 2016, 5, .	6.0	29
6	Genome Editing of Lineage Determinants in Human Pluripotent Stem Cells Reveals Mechanisms of Pancreatic Development and Diabetes. Cell Stem Cell, 2016, 18, 755-768.	11.1	147
7	CRISPR/Cas9 genome editing in human pluripotent stem cells: Harnessing human genetics in a dish. Developmental Dynamics, 2016, 245, 788-806.	1.8	20
8	Mechanisms underlying the formation of induced pluripotent stem cells. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 39-65.	5.9	18
9	Expression of MLL-AF4 or AF4-MLL fusions does not impact the efficiency of DNA damage repair. Oncotarget, 2016, 7, 30440-30452.	1.8	19
10	A CRISPR/Cas-Mediated Selection-free Knockin Strategy in Human Embryonic Stem Cells. Stem Cell Reports, 2015, 4, 1103-1111.	4.8	85
11	The iCRISPR Platform for Rapid Genome Editing in Human Pluripotent Stem Cells. Methods in Enzymology, 2014, 546, 215-250.	1.0	59
12	An iCRISPR Platform for Rapid, Multiplexable, and Inducible Genome Editing in Human Pluripotent Stem Cells. Cell Stem Cell, 2014, 15, 215-226.	11.1	411
13	A Switch Between Topological Domains Underlies <i>HoxD</i> Genes Collinearity in Mouse Limbs. Science, 2013, 340, 1234167.	12.6	391
14	Homologous Recombination DNA Repair Genes Play a Critical Role in Reprogramming to a Pluripotent State. Cell Reports, 2013, 3, 651-660.	6.4	74
15	Neuronopathic Gaucher's disease: induced pluripotent stem cells for disease modelling and testing chaperone activity of small compounds. Human Molecular Genetics, 2013, 22, 633-645.	2.9	75
16	Generation of Feeder-Free Pig Induced Pluripotent Stem Cells without Pou5f1. Cell Transplantation, 2012, 21, 815-825.	2.5	54
17	Generation of Induced Pluripotent Stem Cells from Human Renal Proximal Tubular Cells with Only Two Transcription Factors, Oct4 and Sox2. Journal of Biological Chemistry, 2012, 287, 24131-24138.	3.4	59
18	Simple Generation of Human Induced Pluripotent Stem Cells Using Poly- \hat{l}^2 -amino Esters As the Non-viral Gene Delivery System. Journal of Biological Chemistry, 2011, 286, 12417-12428.	3.4	68

#	Article	IF	CITATIONS
19	Methods for making induced pluripotent stem cells: reprogramming \tilde{A} la carte. Nature Reviews Genetics, 2011, 12, 231-242.	16.3	415
20	Generation of Pig iPS Cells: A Model for Cell Therapy. Journal of Cardiovascular Translational Research, 2011, 4, 121-130.	2.4	84
21	Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells under Xeno-free Conditions Â. Stem Cells, 2010, 28, 36-44.	3.2	92
22	Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8918-8922.	7.1	235
23	Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature, 2009, 460, 53-59.	27.8	660
24	Generation of Induced Pluripotent Stem Cells from Human Cord Blood Using OCT4 and SOX2. Cell Stem Cell, 2009, 5, 353-357.	11.1	392
25	Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 2008, 26, 1276-1284.	17.5	1,275
26	Transgenic analysis of Hoxd gene regulation during digit development. Developmental Biology, 2007, 306, 847-859.	2.0	102
27	A Global Control Region Defines a Chromosomal Regulatory Landscape Containing the HoxD Cluster. Cell, 2003, 113, 405-417.	28.9	422
28	Large scale transgenic and cluster deletion analysis of the HoxD complex separate an ancestral regulatory module from evolutionary innovations. Genes and Development, 2001, 15, 2209-2214.	5.9	128