Federico GonzÃ;lez Grassi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5816175/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 2008, 26, 1276-1284.	17.5	1,275
2	Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature, 2009, 460, 53-59.	27.8	660
3	A Global Control Region Defines a Chromosomal Regulatory Landscape Containing the HoxD Cluster. Cell, 2003, 113, 405-417.	28.9	422
4	Methods for making induced pluripotent stem cells: reprogramming à la carte. Nature Reviews Genetics, 2011, 12, 231-242.	16.3	415
5	An iCRISPR Platform for Rapid, Multiplexable, and Inducible Genome Editing in Human Pluripotent Stem Cells. Cell Stem Cell, 2014, 15, 215-226.	11.1	411
6	Generation of Induced Pluripotent Stem Cells from Human Cord Blood Using OCT4 and SOX2. Cell Stem Cell, 2009, 5, 353-357.	11.1	392
7	A Switch Between Topological Domains Underlies <i>HoxD</i> Genes Collinearity in Mouse Limbs. Science, 2013, 340, 1234167.	12.6	391
8	Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8918-8922.	7.1	235
9	TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells. Nature Genetics, 2018, 50, 83-95.	21.4	156
10	Genome Editing of Lineage Determinants in Human Pluripotent Stem Cells Reveals Mechanisms of Pancreatic Development and Diabetes. Cell Stem Cell, 2016, 18, 755-768.	11.1	147
11	Large scale transgenic and cluster deletion analysis of the HoxD complex separate an ancestral regulatory module from evolutionary innovations. Genes and Development, 2001, 15, 2209-2214.	5.9	128
12	Transgenic analysis of Hoxd gene regulation during digit development. Developmental Biology, 2007, 306, 847-859.	2.0	102
13	Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells under Xeno-free Conditions Â. Stem Cells, 2010, 28, 36-44.	3.2	92
14	A CRISPR/Cas-Mediated Selection-free Knockin Strategy in Human Embryonic Stem Cells. Stem Cell Reports, 2015, 4, 1103-1111.	4.8	85
15	Generation of Pig iPS Cells: A Model for Cell Therapy. Journal of Cardiovascular Translational Research, 2011, 4, 121-130.	2.4	84
16	Neuronopathic Gaucher's disease: induced pluripotent stem cells for disease modelling and testing chaperone activity of small compounds. Human Molecular Genetics, 2013, 22, 633-645.	2.9	75
17	Homologous Recombination DNA Repair Genes Play a Critical Role in Reprogramming to a Pluripotent State. Cell Reports, 2013, 3, 651-660.	6.4	74
18	Simple Generation of Human Induced Pluripotent Stem Cells Using Poly-β-amino Esters As the Non-viral Gene Delivery System. Journal of Biological Chemistry, 2011, 286, 12417-12428.	3.4	68

#	Article	IF	CITATIONS
19	Generation of Induced Pluripotent Stem Cells from Human Renal Proximal Tubular Cells with Only Two Transcription Factors, Oct4 and Sox2. Journal of Biological Chemistry, 2012, 287, 24131-24138.	3.4	59
20	The iCRISPR Platform for Rapid Genome Editing in Human Pluripotent Stem Cells. Methods in Enzymology, 2014, 546, 215-250.	1.0	59
21	Generation of Feeder-Free Pig Induced Pluripotent Stem Cells without Pou5f1. Cell Transplantation, 2012, 21, 815-825.	2.5	54
22	Reorganisation of Hoxd regulatory landscapes during the evolution of a snake-like body plan. ELife, 2016, 5, .	6.0	29
23	DICER1 Is Essential for Self-Renewal of Human Embryonic Stem Cells. Stem Cell Reports, 2018, 11, 616-625.	4.8	24
24	CRISPR/Cas9 genome editing in human pluripotent stem cells: Harnessing human genetics in a dish. Developmental Dynamics, 2016, 245, 788-806.	1.8	20
25	Expression of MLL-AF4 or AF4-MLL fusions does not impact the efficiency of DNA damage repair. Oncotarget, 2016, 7, 30440-30452.	1.8	19
26	Mechanisms underlying the formation of induced pluripotent stem cells. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 39-65.	5.9	18
27	Studying Kidney Disease Using Tissue and Genome Engineering in Human Pluripotent Stem Cells. Nephron, 2018, 138, 48-59.	1.8	10
28	Fine-tuned KDM1A alternative splicing regulates human cardiomyogenesis through an enzymatic-independent mechanism. IScience, 2022, , 104665.	4.1	6