Hong-Quan Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/581581/publications.pdf

Version: 2024-02-01

39 papers 4,276 citations

29 h-index

172457

289244 40 g-index

41 all docs

41 docs citations

41 times ranked

3915 citing authors

#	Article	IF	CITATIONS
1	<i>Arabidopsis</i> cryptochrome 1 undergoes COP1 and LRBsâ€dependent degradation in response to high blue light. New Phytologist, 2022, 234, 1347-1362.	7.3	15
2	Phytochromes A and B Mediate Light Stabilization of BIN2 to Regulate Brassinosteroid Signaling and Photomorphogenesis in Arabidopsis. Frontiers in Plant Science, 2022, 13, 865019.	3.6	7
3	COP1 promotes ABAâ€induced stomatal closure by modulating the abundance of ABI/HAB and AHG3 phosphatases. New Phytologist, 2021, 229, 2035-2049.	7. 3	32
4	Arabidopsis cryptochrome 1 controls photomorphogenesis through regulation of H2A.Z deposition. Plant Cell, 2021, 33, 1961-1979.	6.6	33
5	The involvement of the N-terminal PHR domain of Arabidopsis cryptochromes in mediating light signaling. ABIOTECH, 2021, 2, 146-155.	3.9	1
6	Blue light-dependent interactions of CRY1 with GID1 and DELLA proteins regulate gibberellin signaling and photomorphogenesis in Arabidopsis. Plant Cell, 2021, 33, 2375-2394.	6.6	38
7	Phytochrome B interacts with SWC6 and ARP6 to regulate H2A.Z deposition and photomorphogensis in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2021, 63, 1133-1146.	8.5	20
8	<i>Arabidopsis</i> cryptochrome 1 promotes stomatal development through repression of AGB1 inhibition of SPEECHLESS DNAâ€binding activity. Journal of Integrative Plant Biology, 2021, 63, 1967-1981.	8.5	4
9	Photoexcited CRY1 and phyB interact directly with ARF6 and ARF8 to regulate their DNAâ€binding activity and auxinâ€induced hypocotyl elongation in ⟨i⟩Arabidopsis⟨/i⟩. New Phytologist, 2020, 225, 848-865.	7.3	79
10	Photoexcited Cryptochrome2 Interacts Directly with TOE1 and TOE2 in Flowering Regulation. Plant Physiology, 2020, 184, 487-505.	4.8	36
11	A dynamic model of UVR8 photoreceptor signalling in UVâ€Bâ€acclimated <i>Arabidopsis</i> . New Phytologist, 2020, 227, 857-866.	7.3	26
12	Phytochrome B and AGB1 Coordinately Regulate Photomorphogenesis by Antagonistically Modulating PIF3 Stability in Arabidopsis. Molecular Plant, 2019, 12, 229-247.	8.3	27
13	phyB Interacts with BES1 to Regulate Brassinosteroid Signaling in Arabidopsis. Plant and Cell Physiology, 2019, 60, 353-366.	3.1	49
14	Photoactivated CRY1 and phyB Interact Directly with AUX/IAA Proteins to Inhibit Auxin Signaling in Arabidopsis. Molecular Plant, 2018, 11, 523-541.	8.3	119
15	Blue Light Regulates Secondary Cell Wall Thickening via MYC2/MYC4 Activation of the <i>NST1</i> -Directed Transcriptional Network in Arabidopsis. Plant Cell, 2018, 30, 2512-2528.	6.6	59
16	Photoexcited CRYPTOCHROME 1 Interacts Directly with G-Protein \hat{l}^2 Subunit AGB1 to Regulate the DNA-Binding Activity of HY5 and Photomorphogenesis in Arabidopsis. Molecular Plant, 2018, 11, 1248-1263.	8.3	46
17	Photoexcited CRYPTOCHROME1 Interacts with Dephosphorylated BES1 to Regulate Brassinosteroid Signaling and Photomorphogenesis in Arabidopsis. Plant Cell, 2018, 30, 1989-2005.	6.6	103
18	CRY1 interacts directly with HBI1 to regulate its transcriptional activity and photomorphogenesis in Arabidopsis. Journal of Experimental Botany, 2018, 69, 3867-3881.	4.8	32

#	Article	IF	CITATIONS
19	Arabidopsis G-Protein \hat{l}^2 Subunit AGB1 Interacts with BES1 to Regulate Brassinosteroid Signaling and Cell Elongation. Frontiers in Plant Science, 2017, 8, 2225.	3.6	35
20	Transcriptome Analyses Reveal the Involvement of Both C and N Termini of Cryptochrome 1 in Its Regulation of Phytohormone-Responsive Gene Expression in Arabidopsis. Frontiers in Plant Science, 2016, 7, 294.	3.6	21
21	Pivotal Roles of the Phytochrome-Interacting Factors in Cryptochrome Signaling. Molecular Plant, 2016, 9, 496-497.	8.3	13
22	<scp>DELLA</scp> proteins physically interact with <scp>CONSTANS</scp> to regulate flowering under long days in <i>Arabidopsis</i> FEBS Letters, 2016, 590, 541-549.	2.8	81
23	The CNT1 Domain of Arabidopsis CRY1 Alone Is Sufficient to Mediate Blue Light Inhibition of Hypocotyl Elongation. Molecular Plant, 2015, 8, 822-825.	8.3	59
24	Red-Light-Dependent Interaction of phyB with SPA1 Promotes COP1–SPA1 Dissociation and Photomorphogenic Development in Arabidopsis. Molecular Plant, 2015, 8, 467-478.	8.3	167
25	Arabidopsis miR171-Targeted Scarecrow-Like Proteins Bind to GT cis-Elements and Mediate Gibberellin-Regulated Chlorophyll Biosynthesis under Light Conditions. PLoS Genetics, 2014, 10, e1004519.	3.5	149
26	Strigolactone-Regulated Hypocotyl Elongation Is Dependent on Cryptochrome and Phytochrome Signaling Pathways in Arabidopsis. Molecular Plant, 2014, 7, 528-540.	8.3	100
27	Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis. Biochemical and Biophysical Research Communications, 2014, 454, 78-83.	2.1	82
28	Auxin inhibits stomatal development through MONOPTEROS repression of a mobile peptide gene $\langle i \rangle$ STOMAGEN $\langle i \rangle$ in mesophyll. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3015-23.	7.1	108
29	COP1 and phyB Physically Interact with PIL1 to Regulate Its Stability and Photomorphogenic Development in <i> Arabidopsis < /i > Â. Plant Cell, 2014, 26, 2441-2456.</i>	6.6	128
30	Strigolactone/MAX2-Induced Degradation of Brassinosteroid Transcriptional Effector BES1 Regulates Shoot Branching. Developmental Cell, 2013, 27, 681-688.	7.0	249
31	Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism. Genes and Development, 2011, 25, 1023-1028.	5.9	260
32	Phytochrome B Is Involved in Mediating Red Light-Induced Stomatal Opening in Arabidopsis thaliana. Molecular Plant, 2010, 3, 246-259.	8.3	109
33	Cryptochromes, Phytochromes, and COP1 Regulate Light-Controlled Stomatal Development in <i>Arabidopsis</i> Â. Plant Cell, 2009, 21, 2624-2641.	6.6	248
34	COP1-Mediated Ubiquitination of CONSTANS Is Implicated in Cryptochrome Regulation of Flowering in <i>Arabidopsis</i> Plant Cell, 2008, 20, 292-306.	6.6	355
35	From The Cover: A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12270-12275.	7.1	322
36	N-Terminal Domain–Mediated Homodimerization Is Required for Photoreceptor Activity of Arabidopsis CRYPTOCHROME 1. Plant Cell, 2005, 17, 1569-1584.	6.6	167

#	Article	IF	CITATIONS
37	An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature, 2001, 410, 487-490.	27.8	199
38	The Signaling Mechanism of Arabidopsis CRY1 Involves Direct Interaction with COP1. Plant Cell, 2001, 13, 2573-2587.	6.6	313
39	The C Termini of Arabidopsis Cryptochromes Mediate a Constitutive Light Response. Cell, 2000, 103, 815-827.	28.9	383