Yoichi Takeda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5815765/publications.pdf Version: 2024-02-01

Υοιςμι Τλκέρλ

#	Article	IF	CITATIONS
1	InÂvitro mannosidase activity of EDEM3 against asparagine-linked oligomannose-type glycans. Biochemical and Biophysical Research Communications, 2022, 612, 44-49.	2.1	2
2	UDP-glucose:Glycoprotein Glucosyltransferase–Selenof Complex: A Potential Glycoprotein-folding Machine. Trends in Glycoscience and Glycotechnology, 2022, 34, J49-J53.	0.1	0
3	UDP-glucose:Glycoprotein Glucosyltransferase–Selenof Complex: A Potential Glycoprotein-folding Machine. Trends in Glycoscience and Glycotechnology, 2022, 34, E49-E53.	0.1	Ο
4	l-tryptophan-histidine synthesis by Pseudomonas serine peptidase, an amino acid ester hydrolase of the peptidase family S9. Enzyme and Microbial Technology, 2021, 147, 109785.	3.2	1
5	Development of the original wheyâ€based vinegar using rapeseed meal or wheat bran as a raw material for koji. Journal of Food Processing and Preservation, 2021, 45, e16097.	2.0	4
6	Chiral acidic amino acids as tethers for intramolecular glycosylation. Journal of Carbohydrate Chemistry, 2021, 40, 283-307.	1.1	0
7	Glycan dependent refolding activity of ER glucosyltransferase (UGGT). Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129709.	2.4	7
8	Chemical‧ynthesisâ€Based Approach to Glycoprotein Functions in the Endoplasmic Reticulum. Chemistry - A European Journal, 2020, 26, 15461-15470.	3.3	12
9	Practical preparation of UDP-apiose and its applications for studying apiosyltransferase. Carbohydrate Research, 2019, 477, 20-25.	2.3	6
10	Enzymatic and molecular characterization of α-1,3-glucanase (AgIST2) from <i>Streptomyces thermodiastaticus</i> HF3-3 and its relation with α-1,3-glucanase HF65 (AgIST1). Journal of General and Applied Microbiology, 2019, 65, 18-25.	0.7	7
11	Monitoring of Glycoprotein Quality Control System with a Series of Chemically Synthesized Homogeneous Native and Misfolded Glycoproteins. Journal of the American Chemical Society, 2018, 140, 17499-17507.	13.7	31
12	Characterization and Thermal Denaturation Kinetic Analysis of Recombinant l-Amino Acid Ester Hydrolase from Stenotrophomonas maltophilia. Journal of Agricultural and Food Chemistry, 2018, 66, 11064-11072.	5.2	2
13	Pectin RG-I rhamnosyltransferases represent a novel plant-specific glycosyltransferase family. Nature Plants, 2018, 4, 669-676.	9.3	111
14	<i>Endo</i> â€Î±â€Mannosidaseâ€Catalyzed Transglycosylation. ChemBioChem, 2017, 18, 1376-1378.	2.6	14
15	Purification and Characterization of Elizabethkingia L-Amino Acid Esterase: an Enzyme Useful for Enzymatic Synthesis of the Dipeptide, Valyl-Glycine. Applied Biochemistry and Biotechnology, 2017, 183, 362-373.	2.9	5
16	Cross-Linking Mechanism of Rhamnogalacturonan II through Boric Acid. Trends in Glycoscience and Glycotechnology, 2017, 29, J29-J30.	0.1	0
17	Cross-Linking Mechanism of Rhamnogalacturonan II through Boric Acid. Trends in Glycoscience and Glycotechnology, 2017, 29, E27-E28.	0.1	0
18	Hydrophobic Tagged Dihydrofolate Reductase for Creating Misfolded Glycoprotein Mimetics. ChemBioChem, 2016, 17, 300-303.	2.6	12

Υοιςμι Τακεda

#	Article	IF	CITATIONS
19	Synthesis of misfolded glycoprotein dimers through native chemical ligation of a dimeric peptide thioester. Organic and Biomolecular Chemistry, 2016, 14, 6088-6094.	2.8	7
20	Direct assay for endo-α-mannosidase substrate preference on correctly folded and misfolded model glycoproteins. Carbohydrate Research, 2016, 434, 94-98.	2.3	6
21	Effects of domain composition on catalytic activity of human UDP-glucose:glycoprotein glucosyltransferases. Glycobiology, 2016, 26, 999-1006.	2.5	16
22	Influence of high-mannose glycan whose glucose moiety is substituted with 5-thioglucose on calnexin/calreticulin cycle. RSC Advances, 2016, 6, 76879-76882.	3.6	5
23	Approaches toward High-Mannose-Type Glycan Libraries. Chemical Record, 2016, 16, 35-46.	5.8	9
24	Non-enzymatic reaction of glycosyl oxazoline with peptides. Carbohydrate Research, 2016, 436, 31-35.	2.3	13
25	Synthesis of Glc ₁ Man ₉ â€Glycoprotein Probes by a Misfolding/Enzymatic Glucosylation/Misfolding Sequence. Angewandte Chemie - International Edition, 2016, 55, 3968-3971.	13.8	15
26	Synthesis of Glc ₁ Man ₉ â€Glycoprotein Probes by a Misfolding/Enzymatic Glucosylation/Misfolding Sequence. Angewandte Chemie, 2016, 128, 4036-4039.	2.0	6
27	Functional analysis of endoplasmic reticulum glucosyltransferase (UGGT): Synthetic chemistry's initiative in glycobiology. Seminars in Cell and Developmental Biology, 2015, 41, 90-98.	5.0	46
28	Construction of a Highâ€Mannoseâ€Type Glycan Library by a Renewed Topâ€Down Chemoâ€Enzymatic Approacl Chemistry - A European Journal, 2015, 21, 3224-3233.	^{1.} 3.3	20
29	Preparation of asparagine-linked monoglucosylated high-mannose-type oligosaccharide from egg yolk. Carbohydrate Research, 2015, 411, 37-41.	2.3	11
30	Profiling Aglycon-Recognizing Sites of UDP-glucose:glycoprotein Glucosyltransferase by Means of Squarate-Mediated Labeling. Biochemistry, 2015, 54, 4909-4917.	2.5	20
31	Cooperative role of calnexin and TigA in <i>Aspergillus oryzae</i> glycoprotein folding. Glycobiology, 2015, 25, 1090-1099.	2.5	5
32	Synthetic Approach to Glycoprotein Quality Control System. , 2015, , 305-312.		0
33	Functional Analysis of Endoplasmic Reticulum Glucosyltransferase (UGGT) Using Synthetic Glycans. Trends in Glycoscience and Glycotechnology, 2014, 26, 107-118.	0.1	0
34	Measurement of endo-α-mannosidase activity using a fluorescently labeled oligosaccharide derivative. Bioscience, Biotechnology and Biochemistry, 2014, 78, 927-936.	1.3	7
35	Glycan specificity of a testis-specific lectin chaperone calmegin and effects of hydrophobic interactions. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2904-2913.	2.4	10
36	Synthesis of the Highly Glycosylated Hydrophilic Motif of Extensins. Angewandte Chemie - International Edition, 2014, 53, 9812-9816.	13.8	33

Υοιςμι Τακέδα

#	Article	IF	CITATIONS
37	Both isoforms of human UDP-glucose:glycoprotein glucosyltransferase are enzymatically active. Glycobiology, 2014, 24, 344-350.	2.5	66
38	Trimming of glucosylated N-glycans by human ER α1,2-mannosidase I. Journal of Biochemistry, 2014, 155, 375-384.	1.7	20
39	lsothermal Calorimetric Analysis of Lectin–Sugar Interaction. Methods in Molecular Biology, 2014, 1200, 207-214.	0.9	5
40	Molecular Basis of Interactions between ^ ^#x3B2;-Glucan and Dectin-1 and Their Application in Gene Delivery. Trends in Glycoscience and Glycotechnology, 2014, 26, 171-173.	0.1	0
41	Parallel quantification of lectin–glycan interaction using ultrafiltration. Carbohydrate Research, 2013, 375, 112-117.	2.3	17
42	Topâ€Down Chemoenzymatic Approach to a Highâ€Mannoseâ€Type Glycan Library: Synthesis of a Common Precursor and Its Enzymatic Trimming. Angewandte Chemie - International Edition, 2013, 52, 7426-7431.	13.8	62
43	Deciphering the Roles of Glycan Processing in Glycoprotein Quality Control through Organic Synthesis. Bioscience, Biotechnology and Biochemistry, 2013, 77, 2331-2338.	1.3	2
44	Analysis of glycoprotein processing in the endoplasmic reticulum using synthetic oligosaccharides. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2012, 88, 31-40.	3.8	16
45	Biophysical properties of UDP-glucose:glycoprotein glucosyltransferase, a folding sensor enzyme in the ER, delineated by synthetic probes. Biochemical and Biophysical Research Communications, 2012, 426, 504-510.	2.1	22
46	The action of bromoconduritol on ER glucosidase II. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5357-5359.	2.2	15
47	Chemical approaches toward understanding glycan-mediated protein quality control. Current Opinion in Chemical Biology, 2009, 13, 582-591.	6.1	52
48	Synthesis of calcium phosphate-binding liposome for drug delivery. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4148-4150.	2.2	63
49	Entrapment of Immature Amyloid Protofilaments in the Hydrophobic Domain of Schizophyllan. Polymer Bulletin, 2008, 61, 107-117.	3.3	5
50	Polysaccharideâ€ŧemplated twisted assemble of 2â€anilinonaphthaleneâ€6â€sulfonic acid. Journal of Polymer Science Part A, 2008, 46, 1440-1448.	2.3	4
51	Amidine-bearing lipoplex targeting to hepatocyte cells. Chinese Chemical Letters, 2008, 19, 1115-1118.	9.0	0
52	3′ Poly(dA)-Tailed Thrombin DNA Aptamer to Increase DNase-Resistance and Clotting Inhibitory Activity. Bulletin of the Chemical Society of Japan, 2008, 81, 1485-1491.	3.2	13
53	DNA Conformational Switching by Use of an Intercalator and Its Receptor. Chemistry Letters, 2007, 36, 388-389.	1.3	4
54	Complex Made from TetrasodiumN,N-Bis(carboxylatomethyl) Glutamate and Sodium Oleate that Forms a Highly Ordered Lamella in Gel Phase. Bulletin of the Chemical Society of Japan, 2007, 80, 410-417.	3.2	3

Υοιςμι Τακέδα

#	Article	IF	CITATIONS
55	DNA Binding of Tilorone:  1H NMR and Calorimetric Studies of the Intercalation. Biochemistry, 2007, 46, 8156-8163.	2.5	37
56	Ternary Complex Consisting of DNA, Polycation, and a Natural Polysaccharide of Schizophyllan to Induce Cellular Uptake by Antigen Presenting Cells. Biomacromolecules, 2007, 8, 1178-1186.	5.4	23
57	A Polysaccharide Carrier to Effectively Deliver Native Phosphodiester CpG DNA to Antigen-Presenting Cells. Bioconjugate Chemistry, 2007, 18, 1280-1286.	3.6	25
58	Polyrotaxane/DNA Conjugate by Use of Intercalation:  Bridge Formation between DNA Double Helices. Macromolecules, 2006, 39, 9480-9485.	4.8	12
59	Synthesis and in Vitro Characterization of Antigen-Conjugated Polysaccharide as a CpG DNA Carrier. Bioconjugate Chemistry, 2006, 17, 1136-1140.	3.6	10
60	Encapsulation of Ferricytochromecinto the Nanoparticle Made from a Natural Polysaccharide: Schizophyllan. Chemistry Letters, 2006, 35, 1120-1121.	1.3	3
61	Transition from a Normal to Inverted Cylinder for an Amidine-Bearing Lipid/pDNA Complex and Its Excellent Transfection. Bioconiugate Chemistry, 2005, 16, 1349-1351.	3.6	39