Paolo Actis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5815692/publications.pdf

Version: 2024-02-01

257450 289244 1,915 44 24 40 h-index citations g-index papers 50 50 50 2126 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A subcellular cookie cutter for spatial genomics in human tissue. Analytical and Bioanalytical Chemistry, 2022, 414, 5483-5492.	3.7	6
2	The role of macromolecular crowding in single-entity electrochemistry: Friend or foe?. Current Opinion in Electrochemistry, 2021, 25, 100654.	4.8	3
3	Ribosome Fingerprinting with a Solid-State Nanopore. ACS Sensors, 2020, 5, 3533-3539.	7.8	26
4	Rational design of DNA nanostructures for single molecule biosensing. Nature Communications, 2020, 11, 4384.	12.8	85
5	Macromolecular Crowding Enhances the Detection of DNA and Proteins by a Solid-State Nanopore. Nano Letters, 2020, 20, 5553-5561.	9.1	71
6	Single-entity electrochemistry at confined sensing interfaces. Science China Chemistry, 2020, 63, 589-618.	8.2	38
7	Methods for protein delivery into cells: from current approaches to future perspectives. Biochemical Society Transactions, 2020, 48, 357-365.	3.4	17
8	Mitochondrial isolation: when size matters. Wellcome Open Research, 2020, 5, 226.	1.8	4
9	Mitochondrial isolation: when size matters. Wellcome Open Research, 2020, 5, 226.	1.8	3
10	Remote heart rate monitoring - Assessment of the FacereaderÂrPPg by Noldus. PLoS ONE, 2019, 14, e0225592.	2.5	22
11	Nanoscale tweezers for single-cell biopsies. Nature Nanotechnology, 2019, 14, 80-88.	31.5	147
12	Remote heart rate monitoring - Assessment of the Facereader rPPg by Noldus. , 2019, 14, e0225592.		0
13	Remote heart rate monitoring - Assessment of the Facereader rPPg by Noldus. , 2019, 14, e0225592.		0
14	Remote heart rate monitoring - Assessment of the Facereader rPPg by Noldus. , 2019, 14, e0225592.		0
15	Remote heart rate monitoring - Assessment of the Facereader rPPg by Noldus. , 2019, 14, e0225592.		0
16	Remote heart rate monitoring - Assessment of the Facereader rPPg by Noldus. , 2019, 14, e0225592.		0
17	Sampling from Single Cells. Small Methods, 2018, 2, 1700300.	8.6	44
18	Analysis of 2D DNA Origami with Nanopipettes. ChemElectroChem, 2018, 5, 3014-3020.	3.4	19

#	Article	IF	CITATIONS
19	Assessment of the Fitbit Charge 2 for monitoring heart rate. PLoS ONE, 2018, 13, e0192691.	2.5	115
20	From single cells to single molecules: general discussion. Faraday Discussions, 2016, 193, 141-170.	3.2	4
21	Nanopores: general discussion. Faraday Discussions, 2016, 193, 507-531.	3.2	1
22	Intracellular Hydrogen Peroxide Detection with Functionalised Nanoelectrodes. ChemElectroChem, 2016, 3, 2125-2129.	3.4	43
23	Highlights from the Faraday Discussion on Single Entity Electrochemistry, York, UK, August–September 2016. Chemical Communications, 2016, 52, 13934-13940.	4.1	7
24	On-Demand Delivery of Single DNA Molecules Using Nanopipets. ACS Nano, 2015, 9, 3587-3595.	14.6	66
25	Compartmental Genomics in Living Cells Revealed by Single-Cell Nanobiopsy. ACS Nano, 2014, 8, 546-553.	14.6	144
26	Electrochemical Nanoprobes for Single-Cell Analysis. ACS Nano, 2014, 8, 875-884.	14.6	195
27	Nanosensors for the detection of hydrogen peroxide. Electrochemistry Communications, 2014, 40, 28-30.	4.7	61
28	Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette. Nanoscale, 2013, 5, 9214.	5.6	42
29	Fabrication, Characterization, and Functionalization of Dual Carbon Electrodes as Probes for Scanning Electrochemical Microscopy (SECM). Analytical Chemistry, 2013, 85, 7519-7526.	6. 5	57
30	Local Delivery of Molecules from a Nanopipette for Quantitative Receptor Mapping on Live Cells. Analytical Chemistry, 2013, 85, 9333-9342.	6.5	69
31	Copper sensing with a prion protein modified nanopipette. RSC Advances, 2012, 2, 11638.	3.6	19
32	Voltage controlled nano-injection system for single-cell surgery. Nanoscale, 2012, 4, 5843.	5.6	77
33	Voltage-Controlled Metal Binding on Polyelectrolyte-Functionalized Nanopores. Langmuir, 2011, 27, 6528-6533.	3.5	51
34	Reversible Cation Response with a Protein-Modified Nanopipette. Analytical Chemistry, 2011, 83, 6121-6126.	6.5	69
35	Dynamic Control of Nanoprecipitation in a Nanopipette. ACS Nano, 2011, 5, 3191-3197.	14.6	34
36	Reversible thrombin detection by aptamer functionalized STING sensors. Biosensors and Bioelectronics, 2011, 26, 4503-4507.	10.1	56

PAOLO ACTIS

#	Article	IF	CITATION
37	Functionalized nanopipettes: toward label-free, single cell biosensors. Bioanalytical Reviews, 2010, 1, 177-185.	0.2	78
38	Ultrasensitive mycotoxin detection by STING sensors. Biosensors and Bioelectronics, 2010, 26, 333-337.	10.1	50
39	Influence of the surface termination on the electrochemical properties of boron-doped diamond (BDD) interfaces. Electrochemistry Communications, 2008, 10, 402-406.	4.7	58
40	Functionalization of Glassy Carbon with Diazonium Salts in Ionic Liquids. Langmuir, 2008, 24, 6327-6333.	3.5	47
41	Solvent-free chemical functionalization of hydrogen-terminated boron-doped diamond electrodes with diazonium salts in ionic liquids. Diamond and Related Materials, 2008, 17, 1394-1398.	3.9	10
42	Photografting and patterning of oligonucleotides on benzophenone-modified boron-doped diamond. Chemical Communications, 2007, , 2793.	4.1	24
43	Influence of the Surface Termination of Boron-Doped Diamond Electrodes on Oxygen Reduction in Basic Medium. Electrochemical and Solid-State Letters, 2007, 10, G43.	2.2	29
44	Localized electropolymerization on oxidized boron-doped diamond electrodes modified with pyrrolyl units. Physical Chemistry Chemical Physics, 2006, 8, 4924.	2.8	20