
Jun Hamazaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5815306/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Homeostatic Levels of p62 Control Cytoplasmic Inclusion Body Formation in Autophagy-Deficient Mice. Cell, 2007, 131, 1149-1163.	28.9	1,925
2	A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. Journal of Clinical Investigation, 2011, 121, 4150-4160.	8.2	258
3	Genetic Evidence Linking Age-Dependent Attenuation of the 26S Proteasome with the Aging Process. Molecular and Cellular Biology, 2009, 29, 1095-1106.	2.3	233
4	A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO Journal, 2006, 25, 4524-4536.	7.8	219
5	Assembly Pathway of the Mammalian Proteasome Base Subcomplex Is Mediated by Multiple Specific Chaperones. Cell, 2009, 137, 914-925.	28.9	182
6	The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction. ELife, 2016, 5, .	6.0	137
7	17-DMAG ameliorates polyglutamine-mediated motor neuron degeneration through well-preserved proteasome function in an SBMA model mouse. Human Molecular Genetics, 2009, 18, 898-910.	2.9	109
8	Rpn10-Mediated Degradation of Ubiquitinated Proteins Is Essential for Mouse Development. Molecular and Cellular Biology, 2007, 27, 6629-6638.	2.3	92
9	Structure of the Rpn13-Rpn2 complex provides insights for Rpn13 and Uch37 as anticancer targets. Nature Communications, 2017, 8, 15540.	12.8	67
10	Redundant Roles of Rpn10 and Rpn13 in Recognition of Ubiquitinated Proteins and Cellular Homeostasis. PLoS Genetics, 2015, 11, e1005401.	3.5	65
11	Characterization of the Testis-specific Proteasome Subunit α4s in Mammals. Journal of Biological Chemistry, 2014, 289, 12365-12374.	3.4	48
12	Foxn1-β5t transcriptional axis controls CD8+ T-cell production in the thymus. Nature Communications, 2017, 8, 14419.	12.8	41
13	Crystal structure of the de-ubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain. Biochemical and Biophysical Research Communications, 2009, 390, 855-860.	2.1	40
14	PAC1 Gene Knockout Reveals an Essential Role of Chaperone-Mediated 20S Proteasome Biogenesis and Latent 20S Proteasomes in Cellular Homeostasis. Molecular and Cellular Biology, 2010, 30, 3864-3874.	2.3	37
15	NRF3-POMP-20S Proteasome Assembly Axis Promotes Cancer Development via Ubiquitin-Independent Proteolysis of p53 and Retinoblastoma Protein. Molecular and Cellular Biology, 2020, 40, .	2.3	33
16	Transcriptional regulation of the 26S proteasome by Nrf1. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2018, 94, 325-336.	3.8	30
17	ER-Resident Transcription Factor Nrf1 Regulates Proteasome Expression and Beyond. International Journal of Molecular Sciences, 2020, 21, 3683.	4.1	29
18	PAC1â€₽AC2 proteasome assembly chaperone retains the core α4–α7 assembly intermediates in the cytoplasm. Genes To Cells, 2018, 23, 839-848.	1.2	28

Jun Hamazaki

#	Article	IF	CITATIONS
19	Mouse zygote-specific proteasome assembly chaperone important for maternal-to-zygotic transition. Biology Open, 2013, 2, 170-182.	1.2	27
20	Trans-omics Impact of Thymoproteasome in Cortical Thymic Epithelial Cells. Cell Reports, 2019, 29, 2901-2916.e6.	6.4	27
21	Sirt1-deficiency causes defective protein quality control. Scientific Reports, 2015, 5, 12613.	3.3	26
22	Heterozygous missense variant of the proteasome subunit β-type 9 causes neonatal-onset autoinflammation and immunodeficiency. Nature Communications, 2021, 12, 6819.	12.8	20
23	Specific Modification of Aged Proteasomes Revealed by Tag-Exchangeable Knock-In Mice. Molecular and Cellular Biology, 2019, 39, .	2.3	19
24	Defective induction of the proteasome associated with Tâ€cell receptor signaling underlies Tâ€cell senescence. Genes To Cells, 2019, 24, 801-813.	1.2	18
25	Early and consistent overexpression of ADRM1 in ovarian high-grade serous carcinoma. Journal of Ovarian Research, 2017, 10, 53.	3.0	14
26	<i>Shigella</i> effector IpaH4.5 targets 19S regulatory particle subunit RPN13 in the 26S proteasome to dampen cytotoxic T lymphocyte activation. Cellular Microbiology, 2019, 21, e12974.	2.1	12
27	Ubiquitin-Binding Protein CG5445 Suppresses Aggregation and Cytotoxicity of Amyotrophic Lateral Sclerosis-Linked TDP-43 in <i>Drosophila</i> . Molecular and Cellular Biology, 2018, 38, .	2.3	8
28	Enhanced O-GlcNAcylation Mediates Cytoprotection under Proteasome Impairment by Promoting Proteasome Turnover in Cancer Cells. IScience, 2020, 23, 101299.	4.1	4
29	FAM48A mediates compensatory autophagy induced by proteasome impairment. Genes To Cells, 2019, 24, 559-568.	1.2	1