
Zeng, Yikai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5814625/publications.pdf Version: 2024-02-01

ZENC YIKAI

#	Article	lF	CITATIONS
1	Mathematical modeling and numerical analysis of alkaline zinc-iron flow batteries for energy storage applications. Chemical Engineering Journal, 2021, 405, 126684.	12.7	39
2	Economic analysis of hydrogen-powered data center. International Journal of Hydrogen Energy, 2021, 46, 27841-27850.	7.1	16
3	Effects of in-situ bismuth catalyst electrodeposition on performance of vanadium redox flow batteries. Journal of Power Sources, 2021, 506, 230238.	7.8	29
4	Numerical investigations of effects of the interdigitated channel spacing on overall performance of vanadium redox flow batteries. Journal of Energy Storage, 2020, 32, 101781.	8.1	23
5	A high efficiency electric heater based on dual-helical tube and screw-tape for instant water heating. Applied Thermal Engineering, 2019, 160, 114018.	6.0	6
6	A novel tin-bromine redox flow battery for large-scale energy storage. Applied Energy, 2019, 255, 113756.	10.1	39
7	A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries. Applied Energy, 2019, 238, 435-441.	10.1	113
8	A novel iron-lead redox flow battery for large-scale energy storage. Journal of Power Sources, 2017, 346, 97-102.	7.8	29
9	High-performance zinc bromine flow battery via improved design of electrolyte and electrode. Journal of Power Sources, 2017, 355, 62-68.	7.8	111
10	Critical transport issues for improving the performance of aqueous redox flow batteries. Journal of Power Sources, 2017, 339, 1-12.	7.8	154
11	A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of iron-chromium redox flow batteries. Journal of Power Sources, 2017, 352, 77-82.	7.8	42
12	Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries. Journal of Power Sources, 2017, 341, 318-326.	7.8	134
13	A self-cleaning Li-S battery enabled by a bifunctional redox mediator. Journal of Power Sources, 2017, 361, 203-210.	7.8	46
14	Titanium Carbide Nanoparticleâ€Decorated Electrode Enables Significant Enhancement in Performance of Allâ€Vanadium Redox Flow Batteries. Energy Technology, 2016, 4, 990-996.	3.8	42
15	A low-cost iron-cadmium redox flow battery for large-scale energy storage. Journal of Power Sources, 2016, 330, 55-60.	7.8	44
16	Highly stable pyridinium-functionalized cross-linked anion exchange membranes for all vanadium redox flow batteries. Journal of Power Sources, 2016, 331, 452-461.	7.8	92
17	Unraveling the Positive Roles of Point Defects on Carbon Surfaces in Nonaqueous Lithium–Oxygen Batteries. Journal of Physical Chemistry C, 2016, 120, 18394-18402.	3.1	50
18	Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries. Journal of Power Sources, 2016, 327, 374-383.	7.8	46

Zeng, Yikai

#	Article	IF	CITATIONS
19	Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries. Applied Energy, 2016, 180, 386-391.	10.1	166
20	Performance of a vanadium redox flow battery with a VANADion membrane. Applied Energy, 2016, 180, 353-359.	10.1	68
21	A highly permeable and enhanced surface area carbon-cloth electrode for vanadium redox flow batteries. Journal of Power Sources, 2016, 329, 247-254.	7.8	111
22	Performance enhancement of iron-chromium redox flow batteries by employing interdigitated flow fields. Journal of Power Sources, 2016, 327, 258-264.	7.8	93
23	The effects of design parameters on the charge-discharge performance of iron-chromium redox flow batteries. Applied Energy, 2016, 182, 204-209.	10.1	83
24	Modeling of ion transport through a porous separator in vanadium redox flow batteries. Journal of Power Sources, 2016, 327, 67-76.	7.8	80
25	Modeling of lithium-sulfur batteries incorporating the effect of Li2S precipitation. Journal of Power Sources, 2016, 336, 115-125.	7.8	87
26	A high-performance flow-field structured iron-chromium redox flow battery. Journal of Power Sources, 2016, 324, 738-744.	7.8	145
27	A high-performance dual-scale porous electrode for vanadium redox flow batteries. Journal of Power Sources, 2016, 325, 329-336.	7.8	157
28	A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage. Journal of Power Sources, 2015, 300, 438-443.	7.8	251
29	A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility. Applied Energy, 2015, 158, 157-166.	10.1	118
30	Sensitivity Analysis for a Planar SOFC: Size Effects of the Porous Gas Diffusion Layer Underneath the Channel Rib. Fuel Cells, 2014, 14, 123-134.	2.4	13
31	Numerical study on thermal stresses of a planar solid oxide fuel cell. International Journal of Thermal Sciences, 2014, 77, 1-10.	4.9	41