Gelina S Kopeina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5814498/publications.pdf

Version: 2024-02-01

516710 501196 29 897 16 28 citations g-index h-index papers 29 29 29 1410 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Post-translational Modification of Caspases: The Other Side of Apoptosis Regulation. Trends in Cell Biology, 2017, 27, 322-339.	7.9	104
2	Saga of Mcl-1: regulation from transcription to degradation. Cell Death and Differentiation, 2020, 27, 405-419.	11.2	94
3	Role of the nucleus in apoptosis: signaling and execution. Cellular and Molecular Life Sciences, 2015, 72, 4593-4612.	5.4	84
4	Step-wise formation of eukaryotic double-row polyribosomes and circular translation of polysomal mRNA. Nucleic Acids Research, 2008, 36, 2476-2488.	14.5	77
5	Molecular Comprehension of Mcl-1: From Gene Structure to Cancer Therapy. Trends in Cell Biology, 2019, 29, 549-562.	7.9	68
6	Apoptosis regulation by subcellular relocation of caspases. Scientific Reports, 2018, 8, 12199.	3.3	56
7	Alterations in the nucleocytoplasmic transport in apoptosis: Caspases lead the way. Cell Proliferation, 2018, 51, e12467.	5.3	49
8	The DNA-damage response and nuclear events as regulators of nonapoptotic forms of cell death. Oncogene, 2020, 39, 1-16.	5.9	48
9	Caloric restriction - A promising anti-cancer approach: From molecular mechanisms to clinical trials. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1867, 29-41.	7.4	39
10	A link between mitotic defects and mitotic catastrophe: detection and cell fate. Biology Direct, 2021, 16, 25.	4.6	39
11	Cell death controlling complexes and their potential therapeutic role. Cellular and Molecular Life Sciences, 2015, 72, 505-517.	5.4	35
12	Platinum drugs and taxanes: can we overcome resistance?. Cell Death Discovery, 2021, 7, 155.	4.7	30
13	Caspase-2 is a negative regulator of necroptosis. International Journal of Biochemistry and Cell Biology, 2018, 102, 101-108.	2.8	27
14	Simple and Efficient Protocol for Subcellular Fractionation of Normal and Apoptotic Cells. Cells, 2021, 10, 852.	4.1	25
15	Anastasis: Return Journey from Cell Death. Cancers, 2021, 13, 3671.	3.7	19
16	Long non-coding RNAs: A view to kill ovarian cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188584.	7.4	19
17	Caspase-2 as a master regulator of genomic stability. Trends in Cell Biology, 2021, 31, 712-720.	7.9	16
18	Modulation of Mcl-1 transcription by serum deprivation sensitizes cancer cells to cisplatin. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 557-566.	2.4	10

#	Article	IF	CITATIONS
19	2,4,5-Tris(alkoxyaryl)imidazoline derivatives as potent scaffold for novel p53-MDM2 interaction inhibitors: Design, synthesis, and biological evaluation. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2364-2368.	2.2	9
20	Mcl-1 as a "barrier―in cancer treatment: Can we target it now?. International Review of Cell and Molecular Biology, 2020, 351, 23-55.	3.2	9
21	Sulfonamide derivatives of cis-imidazolines as potent p53-MDM2/MDMX protein-protein interaction inhibitors. Medicinal Chemistry Research, 2021, 30, 2216-2227.	2.4	8
22	Synthetic Design and Biological Evaluation of New p53-MDM2 Interaction Inhibitors Based on Imidazoline Core. Pharmaceuticals, 2022, 15, 444.	3.8	7
23	Upregulation of Mcl-1S Causes Cell-Cycle Perturbations and DNA Damage Accumulation. Frontiers in Cell and Developmental Biology, 2020, 8, 543066.	3.7	6
24	Optical Monitoring of the Biodegradation of Porous and Solid Silicon Nanoparticles. Nanomaterials, 2021, 11, 2167.	4.1	5
25	Requirement for Serine-384 in Caspase-2 processing and activity. Cell Death and Disease, 2020, 11, 825.	6.3	4
26	Necroptosis as a Novel Facet of Mitotic Catastrophe. International Journal of Molecular Sciences, 2022, 23, 3733.	4.1	4
27	Bak and Bcl-xL Participate in Regulating Sensitivity of Solid Tumor Derived Cell Lines to Mcl-1 Inhibitors. Cancers, 2022, 14, 181.	3.7	4
28	Nonresonant CARS Imaging of Porous and Solid Silicon Nanoparticles in Human Cells. ACS Biomaterials Science and Engineering, 2022, 8, 4185-4195.	5.2	2
29	A Balance Between Autophagy and Other Cell Death Modalities in Cancer. Methods in Molecular Biology, 2022, 2445, 3-24.	0.9	O