
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5814175/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Failure to EGFR-TKI-based therapy and tumoural progression are promoted by MEOX2/GLI1-mediated epigenetic regulation of EGFR in the human lung cancer. European Journal of Cancer, 2022, 160, 189-205.	2.8	9
2	Possible Role of Matrix Metalloproteinases and TGF-β in COVID-19 Severity and Sequelae. Journal of Interferon and Cytokine Research, 2022, 42, 352-368.	1.2	16
3	Differential Leukocyte Expression of <i>IFITM1</i> and <i>IFITM3</i> in Patients with Severe Pandemic Influenza A(H1N1) and COVID-19. Journal of Interferon and Cytokine Research, 2022, 42, 430-443.	1.2	7
4	Mycobacterium tuberculosis infection drives a type I IFN signature in lung lymphocytes. Cell Reports, 2022, 39, 110983.	6.4	20
5	Comparing the Cytokine Storms of COVID-19 and Pandemic Influenza. Journal of Interferon and Cytokine Research, 2022, 42, 369-392.	1.2	9
6	LncRNA SOX2â€OT regulates AKT/ERK and SOX2/GLIâ€1 expression, hinders therapy, and worsens clinical prognosis in malignant lung diseases. Molecular Oncology, 2021, 15, 1110-1129.	4.6	29
7	The immune landscape in tuberculosis reveals populations linked to disease and latency. Cell Host and Microbe, 2021, 29, 165-178.e8.	11.0	98
8	CXCL17 Is a Specific Diagnostic Biomarker for Severe Pandemic Influenza A(H1N1) That Predicts Poor Clinical Outcome. Frontiers in Immunology, 2021, 12, 633297.	4.8	9
9	IFN signaling and neutrophil degranulation transcriptional signatures are induced during SARS-CoV-2 infection. Communications Biology, 2021, 4, 290.	4.4	74
10	Leukocytes from Patients with Drug-Sensitive and Multidrug-Resistant Tuberculosis Exhibit Distinctive Profiles of Chemokine Receptor Expression and Migration Capacity. Journal of Immunology Research, 2021, 2021, 1-19.	2.2	10
11	Clinical and Immunological Factors That Distinguish COVID-19 From Pandemic Influenza A(H1N1). Frontiers in Immunology, 2021, 12, 593595.	4.8	32
12	Phenotype of Peripheral NK Cells in Latent, Active, and Meningeal Tuberculosis. Journal of Immunology Research, 2021, 2021, 1-14.	2.2	4
13	Expression of Surfactant Protein D Distinguishes Severe Pandemic Influenza A(H1N1) from Coronavirus Disease 2019. Journal of Infectious Diseases, 2021, 224, 21-30.	4.0	15
14	Experimental Tracheal Replacement: Angiogenesis and Null Apoptosis Promote Stenosis. Journal of Chest Surgery, 2021, 54, 191-199.	0.5	0
15	Clinical Risk Factors for Mortality Among Critically Ill Mexican Patients With COVID-19. Frontiers in Medicine, 2021, 8, 699607.	2.6	3
16	Heterogeneity of Genetic Admixture Determines SLE Susceptibility in Mexican. Frontiers in Genetics, 2021, 12, 701373.	2.3	3
17	CXCL17 Is Dispensable during Hypervirulent Mycobacterium tuberculosis HN878 Infection in Mice. ImmunoHorizons, 2021, 5, 752-759.	1.8	5
18	Genetic diversity of HLA system in three populations from Zacatecas, Mexico: Zacatecas city, Fresnillo and rural Zacatecas. Human Immunology, 2020, 81, 496-498.	2.4	2

#	Article	IF	CITATIONS
19	Genetic diversity of HLA system in four populations from Baja California, Mexico: Mexicali, La Paz, Tijuana and rural Baja California. Human Immunology, 2020, 81, 475-477.	2.4	2
20	Genetic diversity of HLA system in three populations from Guanajuato, Mexico: Guanajuato City, León and rural Guanajuato. Human Immunology, 2020, 81, 510-512.	2.4	2
21	Genetic diversity of HLA system in two populations from Colima, Mexico: Colima city and rural Colima. Human Immunology, 2020, 81, 513-515.	2.4	2
22	Genetic diversity of HLA system in three populations from Chihuahua, Mexico: Chihuahua City, Ciudad Juárez and rural Chihuahua. Human Immunology, 2020, 81, 485-488.	2.4	3
23	Genetic diversity of HLA system in six populations from Jalisco, Mexico: Guadalajara city, Tlajomulco, Tlaquepaque, TonalÃ _i , Zapopan and rural Jalisco. Human Immunology, 2020, 81, 502-505.	2.4	3
24	Genetic diversity of HLA system in three populations from Sonora, Mexico: Ciudad Obregón, Hermosillo and rural Sonora. Human Immunology, 2020, 81, 478-481.	2.4	2
25	Genetic diversity of HLA system in a population from Guerrero, Mexico. Human Immunology, 2020, 81, 550-552.	2.4	3
26	Genetic diversity of HLA system in a population sample from Aguascalientes, Mexico. Human Immunology, 2020, 81, 519-521.	2.4	1
27	Genetic diversity of HLA system in two populations from Michoacán, Mexico: Morelia and rural Michoacán. Human Immunology, 2020, 81, 506-509.	2.4	2
28	Genetic diversity of HLA system in two populations from Nuevo León, Mexico: Monterrey and rural Nuevo León. Human Immunology, 2020, 81, 516-518.	2.4	3
29	Genetic diversity of HLA system in two populations from Durango, Mexico: Durango city and rural Durango. Human Immunology, 2020, 81, 489-491.	2.4	3
30	Genetic diversity of HLA system in two populations from Sinaloa, Mexico: Culiacán and rural Sinaloa. Human Immunology, 2020, 81, 482-484.	2.4	2
31	Genetic diversity of HLA system in two populations from Nayarit, Mexico: Tepic and rural Nayarit. Human Immunology, 2020, 81, 499-501.	2.4	2
32	Genetic diversity of HLA system in two populations from Quintana Roo, Mexico: Cancún and rural Quintana Roo. Human Immunology, 2020, 81, 573-575.	2.4	3
33	Genetic diversity of HLA system in two populations from Yucatán, Mexico: Mérida and rural Yucatán. Human Immunology, 2020, 81, 569-572.	2.4	7
34	Genetic diversity of HLA system in two populations from Campeche, Mexico: Campeche city and rural Campeche. Human Immunology, 2020, 81, 566-568.	2.4	2
35	Genetic diversity of HLA system in two populations from Tlaxcala, Mexico: Tlaxcala city and rural Tlaxcala. Human Immunology, 2020, 81, 544-546.	2.4	17
36	Genetic diversity of HLA system in two populations from Chiapas, Mexico: Tuxtla Gutiérrez and rural Chiapas. Human Immunology, 2020, 81, 563-565.	2.4	4

#	Article	IF	CITATIONS
37	Genetic diversity of HLA system in two populations from Tamaulipas, Mexico: Ciudad Victoria and rural Tamaulipas. Human Immunology, 2020, 81, 525-527.	2.4	1
38	Genetic diversity of HLA system in two populations from Puebla, Mexico: Puebla city and rural Puebla. Human Immunology, 2020, 81, 547-549.	2.4	1
39	Genetic diversity of HLA system in seven populations from Veracruz, Mexico: Veracruz city, Coatzacoalcos, Córdoba, Orizaba, Poza Rica, Xalapa and rural Veracruz. Human Immunology, 2020, 81, 531-534.	2.4	2
40	Genetic diversity of HLA system in two populations from Hidalgo, Mexico: Pachuca and rural Hidalgo. Human Immunology, 2020, 81, 535-538.	2.4	1
41	Genetic diversity of HLA system in two populations from Oaxaca, Mexico: Oaxaca city and rural Oaxaca. Human Immunology, 2020, 81, 553-556.	2.4	4
42	Genetic diversity of HLA system in three populations from Coahuila, Mexico: Torreón, Saltillo and rural Coahuila. Human Immunology, 2020, 81, 492-495.	2.4	2
43	Genetic diversity of HLA system in two populations from Tabasco, Mexico: Villahermosa and rural Tabasco. Human Immunology, 2020, 81, 560-562.	2.4	3
44	Genetic diversity of HLA system in two populations from Morelos, Mexico: Cuernavaca and rural Morelos. Human Immunology, 2020, 81, 557-559.	2.4	2
45	Genetic diversity of HLA system in two populations from San Luis PotosÃ , Mexico: San Luis PotosÃ-City and rural San Luis PotosÃ . Human Immunology, 2020, 81, 528-530.	2.4	2
46	Genetic diversity of HLA system in two populations from Querétaro, Mexico: Querétaro city and rural Querétaro. Human Immunology, 2020, 81, 522-524.	2.4	2
47	Genetic diversity of HLA system in six populations from Mexico City Metropolitan Area, Mexico: Mexico City North, Mexico City South, Mexico City East, Mexico City West, Mexico City Center and rural Mexico City. Human Immunology, 2020, 81, 539-543.	2.4	4
48	Mycobacterium tuberculosis HN878 Infection Induces Human-Like B-Cell Follicles in Mice. Journal of Infectious Diseases, 2020, 221, 1636-1646.	4.0	15
49	The immunogenetic diversity of the HLA system in Mexico correlates with underlying population genetic structure. Human Immunology, 2020, 81, 461-474.	2.4	39
50	Antigens of Mycobacterium tuberculosis Stimulate CXCR6+ Natural Killer Cells. Frontiers in Immunology, 2020, 11, 582414.	4.8	4
51	Esophagogastric junction outflow obstruction: Characterization of a new entity? Clinical, manometric, and neuroimmunological description. Neurogastroenterology and Motility, 2020, 32, e13867.	3.0	11
52	Thinking Outside the Box: Innate- and B Cell-Memory Responses as Novel Protective Mechanisms Against Tuberculosis. Frontiers in Immunology, 2020, 11, 226.	4.8	19
53	Formation of Lung Inducible Bronchus Associated Lymphoid Tissue Is Regulated by Mycobacterium tuberculosis Expressed Determinants. Frontiers in Immunology, 2020, 11, 1325.	4.8	11
54	A unique immune signature of serum cytokine and chemokine dynamics in patients with Zika virus infection from a tropical region in Southern Mexico. International Journal of Infectious Diseases, 2020, 94, 4-11.	3.3	10

#	Article	IF	CITATIONS
55	Diversity of HLA Class I and Class II blocks and conserved extended haplotypes in Lacandon Mayans. Scientific Reports, 2020, 10, 3248.	3.3	11
56	The protective and pathogenic roles of CXCL17 in human health and disease: Potential in respiratory medicine. Cytokine and Growth Factor Reviews, 2020, 53, 53-62.	7.2	34
57	The role of socioeconomic status in the susceptibility to develop systemic lupus erythematosus in Mexican patients. Clinical Rheumatology, 2020, 39, 2151-2161.	2.2	6
58	S100A8/A9 regulates CD11b expression and neutrophil recruitment during chronic tuberculosis. Journal of Clinical Investigation, 2020, 130, 3098-3112.	8.2	85
59	Dysregulated expression of hypoxia-inducible factors augments myofibroblasts differentiation in idiopathic pulmonary fibrosis. Respiratory Research, 2019, 20, 130.	3.6	38
60	High performance of rapid influenza diagnostic test and variable effectiveness of influenza vaccines in Mexico. International Journal of Infectious Diseases, 2019, 89, 87-95.	3.3	9
61	Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis. Nature, 2019, 570, 528-532.	27.8	153
62	Inflammatory chemokine profiles and their correlations with effector CD4 T cell and regulatory cell subpopulations in cutaneous lupus erythematosus. Cytokine, 2019, 119, 95-112.	3.2	21
63	MicroRNA Expression in Cutaneous Lupus: A New Window to Understand Its Pathogenesis. Mediators of Inflammation, 2019, 2019, 1-26.	3.0	9
64	CD3+ Macrophages Deliver Proinflammatory Cytokines by a CD3- and Transmembrane TNF-Dependent Pathway and Are Increased at the BCG-Infection Site. Frontiers in Immunology, 2019, 10, 2550.	4.8	34
65	Epigenetics in non-small cell lung carcinomas. Salud Publica De Mexico, 2019, 61, 318.	0.4	3
66	Th-17 cytokines are associated with severity of Trypanosoma cruzi chronic infection in pediatric patients from endemic areas of Mexico. Acta Tropica, 2018, 178, 134-141.	2.0	23
67	An original Eurasian haplotype, HLA-DRB1*14:54-DQB1*05:03, influences the susceptibility to idiopathic achalasia. PLoS ONE, 2018, 13, e0201676.	2.5	20
68	Transmembrane protease, serine 4 (TMPRSS4) is upregulated in IPF lungs and increases the fibrotic response in bleomycin-induced lung injury. PLoS ONE, 2018, 13, e0192963.	2.5	10
69	Matrix metalloproteinase-9 deficiency protects mice from severe influenza A viral infection. JCI Insight, 2018, 3, .	5.0	31
70	Novel role for IL-22 in protection during chronic Mycobacterium tuberculosis HN878 infection. Mucosal Immunology, 2017, 10, 1069-1081.	6.0	73
71	The Hedgehog-GLI pathway in embryonic development and cancer: implications for pulmonary oncology therapy. Oncotarget, 2017, 8, 60684-60703.	1.8	47
72	Memory of Natural Killer Cells: A New Chance against Mycobacterium tuberculosis?. Frontiers in Immunology, 2017, 8, 967.	4.8	53

#	Article	IF	CITATIONS
73	Molecular features of influenza A (H1N1)pdm09 prevalent in Mexico during winter seasons 2012-2014. PLoS ONE, 2017, 12, e0180419.	2.5	7
74	Histone code and long non-coding RNAs (lncRNAs) aberrations in lung cancer: implications in the therapy response. Clinical Epigenetics, 2017, 9, 98.	4.1	25
75	Interleukin-17 limits hypoxia-inducible factor 1α and development of hypoxic granulomas during tuberculosis. JCI Insight, 2017, 2, .	5.0	45
76	Genetic Differentiation in a Sample from Northern Mexico City Detected by HLA System Analysis: Impact in the Study of Population Immunogenetics. Human Biology, 2017, 89, 181.	0.2	5
77	Epigenomic study identifies a novel mesenchyme homeobox2-GLI1 transcription axis involved in cancer drug resistance, overall survival and therapy prognosis in lung cancer patients. Oncotarget, 2017, 8, 67056-67081.	1.8	30
78	Association of Nuclear Factor-Erythroid 2-Related Factor 2, Thioredoxin Interacting Protein, and Heme Oxygenase-1 Gene Polymorphisms with Diabetes and Obesity in Mexican Patients. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-8.	4.0	30
79	CD38 Expression in a Subset of Memory T Cells Is Independent of Cell Cycling as a Correlate of HIV Disease Progression. Disease Markers, 2016, 2016, 1-10.	1.3	9
80	Angiotensin II Type 1 receptor (AGTR1) gene polymorphisms are associated with vascular manifestations in patients with systemic sclerosis (SSc). JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2016, 17, 147032031665995.	1.7	4
81	A transcriptome-based model of central memory CD4 T cell death in HIV infection. BMC Genomics, 2016, 17, 956.	2.8	11
82	Effects of 2-methoxyestradiol on apoptosis and HIF-1α and HIF-2α expression in lung cancer cells under normoxia and hypoxia. Oncology Reports, 2016, 35, 577-583.	2.6	32
83	High levels of anti-tuberculin (IgC) antibodies correlate with the blocking of T-cell proliferation in individuals with high exposure to Mycobacterium tuberculosis. International Journal of Infectious Diseases, 2016, 43, 21-24.	3.3	6
84	Analysis of heat shock protein 70 gene polymorphisms Mexican patients with idiopathic pulmonary fibrosis. BMC Pulmonary Medicine, 2015, 15, 129.	2.0	21
85	HLA Class I and II Blocks Are Associated to Susceptibility, Clinical Subtypes and Autoantibodies in Mexican Systemic Sclerosis (SSc) Patients. PLoS ONE, 2015, 10, e0126727.	2.5	22
86	Circulating levels of miR-150 are associated with poorer outcomes of A/H1N1 infection. Experimental and Molecular Pathology, 2015, 99, 253-261.	2.1	33
87	Serum Surfactant Protein D (SP-D) is a Prognostic Marker of Poor Outcome in Patients with A/H1N1 Virus Infection. Lung, 2015, 193, 25-30.	3.3	25
88	Helminth-induced arginase-1 exacerbates lung inflammation and disease severity in tuberculosis. Journal of Clinical Investigation, 2015, 125, 4699-4713.	8.2	87
89	Overexpression of MEOX2 and TWIST1 Is Associated with H3K27me3 Levels and Determines Lung Cancer Chemoresistance and Prognosis. PLoS ONE, 2014, 9, e114104.	2.5	35
90	Obesity and pro-inflammatory mediators are associated with acute kidney injury in patients with A/H1N1 influenza and acute respiratory distress syndrome. Experimental and Molecular Pathology, 2014, 97, 453-457.	2.1	13

#	Article	IF	CITATIONS
91	Genetic susceptibility to multicase hypersensitivity pneumonitis is associated with the TNF-238 GG genotype of the promoter region and HLA-DRB1*04 bearing HLA haplotypes. Respiratory Medicine, 2014, 108, 211-217.	2.9	37
92	The Role of Leptin in the Development of Pulmonary Neutrophilia in Infection and Acute Lung Injury*. Critical Care Medicine, 2014, 42, e143-e151.	0.9	46
93	Genetic variations in toll-like receptor 4 in Mexican-Mestizo patients with intra-abdominal infection and/or pneumonia. Immunology Letters, 2013, 153, 41-46.	2.5	7
94	Angiogenic and inflammatory markers in acute respiratory distress syndrome and renal injury associated to A/H1N1 virus infection. Experimental and Molecular Pathology, 2013, 94, 486-492.	2.1	41
95	Seasonal and pandemic influenza H1N1 viruses induce differential expression of SOCS-1 and RIG-I genes and cytokine/chemokine production in macrophages. Cytokine, 2013, 62, 151-159.	3.2	34
96	Variants in toll-like receptor 9 gene influence susceptibility to tuberculosis in a Mexican population. Journal of Translational Medicine, 2013, 11, 220.	4.4	40
97	S100A8/A9 Proteins Mediate Neutrophilic Inflammation and Lung Pathology during Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1137-1146.	5.6	216
98	HLA Class I and Class II Conserved Extended Haplotypes and Their Fragments or Blocks in Mexicans: Implications for the Study of Genetic Diversity in Admixed Populations. PLoS ONE, 2013, 8, e74442.	2.5	62
99	Cellular and Humoral Mechanisms Involved in the Control of Tuberculosis. Clinical and Developmental Immunology, 2012, 2012, 1-18.	3.3	116
100	CXCL17 Is a Mucosal Chemokine Elevated in Idiopathic Pulmonary Fibrosis That Exhibits Broad Antimicrobial Activity. Journal of Immunology, 2012, 188, 6399-6406.	0.8	71
101	Genetic variants associated with severe pneumonia in A/H1N1 influenza infection. European Respiratory Journal, 2012, 39, 604-610.	6.7	92
102	Interaction between immunoglobulin allotypes and NK receptor genes in diabetes post-hepatitis C virus infection. Immunobiology, 2011, 216, 686-691.	1.9	3
103	The effect of CTLA-4Ig, a CD28/B7 antagonist, on the lung inflammation and T cell subset profile during murine hypersensitivity pneumonitis. Experimental and Molecular Pathology, 2011, 91, 718-722.	2.1	16
104	Amaranthus leucocarpuslectin (ALL) Enhances anti-CD3-Dependent Activation of Murine T Cells and Promotes Cell Survival. Immunological Investigations, 2011, 40, 113-129.	2.0	6
105	Inflammatory profiles in severe pneumonia associated with the pandemic influenza A/H1N1 virus isolated in Mexico City. Autoimmunity, 2011, 44, 562-570.	2.6	31
106	Inflammatory response and dynamics of lung T cell subsets in Th1, Th2 biased and Th2 deficient mice during the development of hypersensitivity pneumonitis. Experimental and Molecular Pathology, 2010, 88, 407-415.	2.1	14
107	PDCD1 gene polymorphisms in different Mexican ethnic groups and their role in the susceptibility to hypersensitivity pneumonitis. Clinical Biochemistry, 2010, 43, 929-931.	1.9	5
108	Distribution of HLA Class II Alleles and Haplotypes in Mexican Mestizo Population: Comparison with Other Populations. Immunological Investigations, 2010, 39, 268-283.	2.0	19

#	Article	IF	CITATIONS
109	Humoral immunity in tuberculin skin test anergy and its role in high-risk persons exposed to active tuberculosis. Molecular Immunology, 2010, 47, 1066-1073.	2.2	32
110	Erratum to "Humoral immunity in tuberculin skin test anergy and its role in high-risk persons exposed to active tuberculosis―[Mol. Immunol. 47 (2010) 1066–1073]. Molecular Immunology, 2010, 47, 2152.	2.2	0
111	Molecular signatures distinguishing active from latent tuberculosis in peripheral blood mononuclear cells, after in vitro antigenic stimulation with purified protein derivative of tuberculin (PPD) or Candida: a preliminary report. Immunologic Research, 2009, 45, 1-12.	2.9	37
112	Protective KIR–HLA interactions for HCV infection in intravenous drug users. Molecular Immunology, 2009, 46, 2723-2727.	2.2	34
113	HLA class I and II polymorphisms in Mexican Mestizo patients with dengue fever. Acta Tropica, 2009, 112, 193-197.	2.0	39
114	Pneumonia and Respiratory Failure from Swine-Origin Influenza A (H1N1) in Mexico. New England Journal of Medicine, 2009, 361, 680-689.	27.0	1,687
115	Possible role of natural killer cells in pemphigus vulgarisâ€fâ~â€fpreliminary observations. Clinical and Experimental Immunology, 2008, 152, 472-481.	2.6	27
116	Transporter associated with antigen processing (TAP) 1 gene polymorphisms in patients with hypersensitivity pneumonitis. Experimental and Molecular Pathology, 2008, 84, 173-177.	2.1	55
117	HLA class I and class II haplotypes in admixed families from several regions of Mexico. Molecular Immunology, 2008, 45, 1171-1178.	2.2	72
118	Interaction of NK inhibitory receptor genes with HLA-C and MHC class II alleles in Hepatitis C virus infection outcome. Molecular Immunology, 2008, 45, 2429-2436.	2.2	105
119	Genetic interactions of KIR and G1M immunoglobulin allotypes differ in obese from non-obese individuals with type 2 diabetes. Molecular Immunology, 2008, 45, 3857-3862.	2.2	13
120	Genetic admixture and diversity estimations in the Mexican Mestizo population from Mexico City using 15 STR polymorphic markers. Forensic Science International: Genetics, 2008, 2, e37-e39.	3.1	66
121	Functional Diversity of T-Cell Subpopulations in Subacute and Chronic Hypersensitivity Pneumonitis. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 44-55.	5.6	154
122	Genetic fixity in the human major histocompatibility complex and block size diversity in the class I region including HLA-E. BMC Genetics, 2007, 8, 14.	2.7	23
123	Chimerism and tetragametic chimerism in humans: implications in autoimmunity, allorecognition and tolerance. Immunologic Research, 2007, 38, 213-236.	2.9	22
124	Tuberculin anergy mediated by humoral immunity. FASEB Journal, 2007, 21, A403.	0.5	0
125	Interaction of KIR Genes and G1M Immunoglobulin Allotypes Confer Susceptibility to Type 2 Diabetes in Puerto Rican Americans. Human Immunology, 2006, 67, 907-914.	2.4	10
126	Increased FasL expression correlates with apoptotic changes in granulocytes cultured with oxidized clozapine. Toxicology and Applied Pharmacology, 2006, 214, 326-334.	2.8	24

#	Article	IF	CITATIONS
127	Allorecognition of an HLA-A*01 Aberrant Allele by an HLA Identical Family Member Carrying the HLA-A*0101 Allele. Journal of Immunology, 2006, 177, 8643-8649.	0.8	3
128	Stem Cells in Aging: Influence of Ontogenic, Genetic and Environmental Factors. Journal of Stem Cells, 2006, 1, 125-147.	1.0	1
129	Cytochrome P4501A1 polymorphisms in the Amerindian and Mestizo populations of Mexico. Cell Biochemistry and Function, 2005, 23, 189-193.	2.9	13
130	Tumor necrosis factor-alpha â^'308 promoter polymorphism contributes independently to HLA alleles in the severity of rheumatoid arthritis in Mexicans. Journal of Autoimmunity, 2005, 24, 63-68.	6.5	53
131	HLA-DRB1*0101 is associated with foliaceous pemphigus in Mexicans. International Journal of Dermatology, 2005, 44, 350-350.	1.0	11
132	Class I and class II MHC polymorphisms in Mexican patients with Behçet's disease. Immunology Letters, 2004, 93, 211-215.	2.5	27
133	Polymorphisms in the promoter region of tumor necrosis factor alpha (TNF-α) and the HLA-DRB1 locus in Mexican Mestizo patients with ulcerative colitis. Immunology Letters, 2004, 95, 31-35.	2.5	34
134	Association study of LMP gene polymorphisms in Mexican patients with spondyloarthritis. Human Immunology, 2004, 65, 1437-1442.	2.4	29
135	Distribution of HLA-B alleles in Mexican Amerindian populations. Immunogenetics, 2003, 54, 756-760.	2.4	24
136	LMP2 and LMP7 gene polymorphism in Mexican populations: Mestizos and Amerindians. Genes and Immunity, 2002, 3, 373-377.	4.1	19
137	Polymorphism and distribution of HLA-DR2 alleles in Mexican populations. Human Immunology, 2001, 62, 286-291.	2.4	11
138	Tumor necrosis factor-α promoter polymorphisms in Mexican patients with systemic lupus erythematosus (SLE). Genes and Immunity, 2001, 2, 363-366.	4.1	74
139	Major Histocompatibility Complex and Tumor Necrosis Factor- α Polymorphisms in Pigeon Breeder's Disease. American Journal of Respiratory and Critical Care Medicine, 2001, 163, 1528-1533.	5.6	146
140	HLA genes in Mexican Mazatecans, the peopling of the Americas and the uniqueness of Amerindians. Tissue Antigens, 2000, 56, 405-416.	1.0	94
141	Lack of association between the polymorphism at the heat-shock protein (HSP70-2) gene and systemic lupus erythematosus (SLE) in the Mexican Mestizo population. Genes and Immunity, 2000, 1, 367-370.	4.1	9
142	HLA-DR4 allele frequencies on Indian and Mestizo population from Mexico. Human Immunology, 2000, 61, 341-344.	2.4	25
143	Class II major histocompatibility complex typing across the ethnic barrier in pemphigoid gestationis. A study in Mexicans. International Journal of Dermatology, 1999, 38, 46-51.	1.0	29
144	Heat-shock protein (HSP70-2) allelic frequencies in three distinct Mexican populations. Genes and Immunity, 1999, 1, 66-68.	4.1	4

#	Article	IF	CITATIONS
145	HLA-DRB and HLA-DQB loci in the genetic susceptibility to develop glaucoma in Mexicans. American Journal of Ophthalmology, 1999, 128, 297-300.	3.3	16
146	Complotype SC30 Is Associated With Susceptibility to Develop Ulcerative Colitis in Mexicans. Journal of Clinical Gastroenterology, 1998, 27, 178-179.	2.2	15
147	HLA-DR7 in Association with Chlorpromazine-induced Lupus Anticoagulant (LA). Journal of Autoimmunity, 1997, 10, 579-583.	6.5	19
148	Description of HLA - A * 6803 and A * 68N in Mazatecan Indians from Mexico. Immunogenetics, 1997, 46, 446-447.	2.4	13