
## Angela Logan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5813678/publications.pdf Version: 2024-02-01



ANCELALOCAN

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | lschaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS.<br>Nature, 2014, 515, 431-435.                                                                                                                   | 27.8 | 1,989     |
| 2  | Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory<br>Macrophages. Cell, 2016, 167, 457-470.e13.                                                                                                  | 28.9 | 1,396     |
| 3  | Mitochondrial ROS Produced via Reverse Electron Transport Extend Animal Lifespan. Cell Metabolism, 2016, 23, 725-734.                                                                                                                       | 16.2 | 296       |
| 4  | Measurement of H2O2 within Living Drosophila during Aging Using a Ratiometric Mass Spectrometry<br>Probe Targeted to the Mitochondrial Matrix. Cell Metabolism, 2011, 13, 340-350.                                                          | 16.2 | 267       |
| 5  | Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis. Free Radical Biology and Medicine, 2014, 70, 204-213.                                                         | 2.9  | 126       |
| 6  | Mitochondrial Respiration Is Reduced in Atherosclerosis, Promoting Necrotic Core Formation and<br>Reducing Relative Fibrous Cap Thickness. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37,<br>2322-2332.                      | 2.4  | 120       |
| 7  | Succinate accumulation drives ischaemia-reperfusion injury during organ transplantation. Nature<br>Metabolism, 2019, 1, 966-974.                                                                                                            | 11.9 | 103       |
| 8  | Mitochondria‶argeted Antioxidants in the Treatment of Disease. Annals of the New York Academy of<br>Sciences, 2008, 1147, 105-111.                                                                                                          | 3.8  | 96        |
| 9  | <i>In vivo</i> levels of mitochondrial hydrogen peroxide increase with age in mt <scp>DNA</scp><br>mutator mice. Aging Cell, 2014, 13, 765-768.                                                                                             | 6.7  | 94        |
| 10 | Non-enzymatic N -acetylation of Lysine Residues by AcetylCoA Often Occurs via a Proximal S -acetylated<br>Thiol Intermediate Sensitive to Glyoxalase II. Cell Reports, 2017, 18, 2105-2112.                                                 | 6.4  | 90        |
| 11 | Treating the placenta to prevent adverse effects of gestational hypoxia on fetal brain development.<br>Scientific Reports, 2017, 7, 9079.                                                                                                   | 3.3  | 76        |
| 12 | MitoNeoD: A Mitochondria-Targeted Superoxide Probe. Cell Chemical Biology, 2017, 24, 1285-1298.e12.                                                                                                                                         | 5.2  | 69        |
| 13 | Placental Adaptation to Early-Onset Hypoxic Pregnancy and Mitochondria-Targeted Antioxidant<br>Therapy in a Rodent Model. American Journal of Pathology, 2018, 188, 2704-2716.                                                              | 3.8  | 65        |
| 14 | Impact of the mitochondria-targeted antioxidant MitoQ on hypoxia-induced pulmonary hypertension.<br>European Respiratory Journal, 2018, 51, 1701024.                                                                                        | 6.7  | 64        |
| 15 | Using exomarkers to assess mitochondrial reactive species in vivo. Biochimica Et Biophysica Acta -<br>General Subjects, 2014, 1840, 923-930.                                                                                                | 2.4  | 55        |
| 16 | A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes. Free<br>Radical Biology and Medicine, 2014, 67, 437-450.                                                                                     | 2.9  | 44        |
| 17 | Myocardial NADPH oxidase-4 regulates the physiological response to acute exercise. ELife, 2018, 7, .                                                                                                                                        | 6.0  | 44        |
| 18 | In vivo evidence of mitochondrial dysfunction and altered redox homeostasis in a genetic mouse<br>model of propionic acidemia: Implications for the pathophysiology of this disorder. Free Radical<br>Biology and Medicine, 2016, 96, 1-12. | 2.9  | 42        |

Angela Logan

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Targeting succinate dehydrogenase with malonate ester prodrugs decreases renal ischemia<br>reperfusion injury. Redox Biology, 2020, 36, 101640.                                                         | 9.0  | 42        |
| 20 | Complex I Deficiency Due to Selective Loss of Ndufs4 in the Mouse Heart Results in Severe<br>Hypertrophic Cardiomyopathy. PLoS ONE, 2014, 9, e94157.                                                    | 2.5  | 41        |
| 21 | Selective Disruption of Mitochondrial Thiol Redox State in Cells and InÂVivo. Cell Chemical Biology, 2019, 26, 449-461.e8.                                                                              | 5.2  | 41        |
| 22 | Translatable mitochondria-targeted protection against programmed cardiovascular dysfunction.<br>Science Advances, 2020, 6, eabb1929.                                                                    | 10.3 | 41        |
| 23 | lschemic preconditioning protects against cardiac ischemia reperfusion injury without affecting<br>succinate accumulation or oxidation. Journal of Molecular and Cellular Cardiology, 2018, 123, 88-91. | 1.9  | 38        |
| 24 | Assessment of H2S in vivo using the newly developed mitochondria-targeted mass spectrometry probe<br>MitoA. Journal of Biological Chemistry, 2017, 292, 7761-7773.                                      | 3.4  | 34        |
| 25 | Synthesis of triphenylphosphonium vitamin E derivatives as mitochondria-targeted antioxidants.<br>Tetrahedron, 2015, 71, 8444-8453.                                                                     | 1.9  | 32        |
| 26 | A sensitive mass spectrometric assay for mitochondrial CoQ pool redox state in vivo. Free Radical<br>Biology and Medicine, 2020, 147, 37-47.                                                            | 2.9  | 32        |
| 27 | Ester Prodrugs of Malonate with Enhanced Intracellular Delivery Protect Against Cardiac<br>Ischemia-Reperfusion Injury In Vivo. Cardiovascular Drugs and Therapy, 2022, 36, 1-13.                       | 2.6  | 28        |
| 28 | Early detection of doxorubicin-induced cardiotoxicity in rats by its cardiac metabolic signature assessed with hyperpolarized MRI. Communications Biology, 2020, 3, 692.                                | 4.4  | 25        |
| 29 | Glycolysis promotes caspase-3 activation in lipid rafts in T cells. Cell Death and Disease, 2018, 9, 62.                                                                                                | 6.3  | 15        |
| 30 | Mitochondria-targeted antioxidant MitoQ ameliorates ischaemia–reperfusion injury in kidney<br>transplantation models. British Journal of Surgery, 2021, 108, 1072-1081.                                 | 0.3  | 15        |
| 31 | Using chemical biology to assess and modulate mitochondria: progress and challenges. Interface<br>Focus, 2017, 7, 20160151.                                                                             | 3.0  | 11        |
| 32 | Mitochondria antioxidant protection against cardiovascular dysfunction programmed by earlyâ€onset<br>gestational hypoxia. FASEB Journal, 2021, 35, e21446.                                              | 0.5  | 11        |
| 33 | Confirmation of the Cardioprotective Effect of MitoGamide in the Diabetic Heart. Cardiovascular<br>Drugs and Therapy, 2020, 34, 823-834.                                                                | 2.6  | 9         |
| 34 | Isolating adverse effects of glucocorticoids on the embryonic cardiovascular system. FASEB Journal, 2020, 34, 9664-9677.                                                                                | 0.5  | 8         |
| 35 | 182 MITOCHONDRIAL DNA DAMAGE PROMOTES ATHEROSCLEROSIS AND CORRELATES WITH HIGHER RISK<br>PLAQUE IN HUMANS. Heart, 2013, 99, A103.2-A103.                                                                | 2.9  | 0         |
| 36 | 208â€Cardioprotection by the mitochondria-targeted superoxide generator mitoparaquat in a murine<br>model of acute myocardial ischaemia reperfusion injury. Heart, 2017, 103, A138.3-A139.              | 2.9  | 0         |