
Sherri R Davies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5813602/publications.pdf Version: 2024-02-01

SHEDDI P DAVIES

#	Article	IF	CITATIONS
1	PDXNet portal: patient-derived Xenograft model, data, workflow and tool discovery. NAR Cancer, 2022, 4, zcac014.	3.1	7
2	Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts. Nature Genetics, 2021, 53, 86-99.	21.4	118
3	Comprehensive characterization of 536 patient-derived xenograft models prioritizes candidates for targeted treatment. Nature Communications, 2021, 12, 5086.	12.8	58
4	Research-based PAM50 signature and long-term breast cancer survival. Breast Cancer Research and Treatment, 2020, 179, 197-206.	2.5	53
5	Integrated Proteomic and Glycoproteomic Characterization of Human High-Grade Serous Ovarian Carcinoma. Cell Reports, 2020, 33, 108276.	6.4	83
6	Proteomic Resistance Biomarkers for PI3K Inhibitor in Triple Negative Breast Cancer Patient-Derived Xenograft Models. Cancers, 2020, 12, 3857.	3.7	8
7	Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma. Cell, 2019, 179, 964-983.e31.	28.9	430
8	Regulated Phosphosignaling Associated with Breast Cancer Subtypes and Druggability*. Molecular and Cellular Proteomics, 2019, 18, 1630-1650.	3.8	14
9	miRNAs and Long-term Breast Cancer Survival: Evidence from the WHEL Study. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 1525-1533.	2.5	14
10	Proteogenomic Analysis of Human Colon Cancer Reveals New Therapeutic Opportunities. Cell, 2019, 177, 1035-1049.e19.	28.9	498
11	Mass Spectrometry–Based Proteomics Reveals Potential Roles of NEK9 and MAP2K4 in Resistance to PI3K Inhibition in Triple-Negative Breast Cancers. Cancer Research, 2018, 78, 2732-2746.	0.9	52
12	The prognostic effects of somatic mutations in ER-positive breast cancer. Nature Communications, 2018, 9, 3476.	12.8	89
13	Functional Annotation of ESR1 Gene Fusions in Estrogen Receptor-Positive Breast Cancer. Cell Reports, 2018, 24, 1434-1444.e7.	6.4	73
14	Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography–mass spectrometry. Nature Protocols, 2018, 13, 1632-1661.	12.0	377
15	Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nature Communications, 2017, 8, 14864.	12.8	112
16	An mRNA Gene Expression–Based Signature to Identify FGFR1-Amplified Estrogen Receptor–Positive Breast Tumors. Journal of Molecular Diagnostics, 2017, 19, 147-161.	2.8	11
17	Breast tumors educate the proteome of stromal tissue in an individualized but coordinated manner. Science Signaling, 2017, 10, .	3.6	25
18	Quality Assessments of Long-Term Quantitative Proteomic Analysis of Breast Cancer Xenograft Tissues. Journal of Proteome Research, 2017, 16, 4523-4530.	3.7	17

SHERRI R DAVIES

#	Article	IF	CITATIONS
19	PAM50 gene signatures and breast cancer prognosis with adjuvant anthracycline- and taxane-based chemotherapy: correlative analysis of C9741 (Alliance). Npj Breast Cancer, 2016, 2, .	5.2	80
20	Proteogenomics connects somatic mutations to signalling in breast cancer. Nature, 2016, 534, 55-62.	27.8	1,384
21	Aromatase inhibition remodels the clonal architecture of estrogen-receptor-positive breast cancers. Nature Communications, 2016, 7, 12498.	12.8	69
22	Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer. Cell, 2016, 166, 755-765.	28.9	804
23	An Analysis of the Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel Splicing Events in Cancer. Molecular and Cellular Proteomics, 2016, 15, 1060-1071.	3.8	104
24	Recommendations for the Generation, Quantification, Storage, and Handling of Peptides Used for Mass Spectrometry–Based Assays. Clinical Chemistry, 2016, 62, 48-69.	3.2	187
25	Reproducibility of Differential Proteomic Technologies in CPTAC Fractionated Xenografts. Journal of Proteome Research, 2016, 15, 691-706.	3.7	44
26	QuantFusion: Novel Unified Methodology for Enhanced Coverage and Precision in Quantifying Global Proteomic Changes in Whole Tissues. Molecular and Cellular Proteomics, 2016, 15, 740-751.	3.8	8
27	Integrated Bottom-Up and Top-Down Proteomics of Patient-Derived Breast Tumor Xenografts. Molecular and Cellular Proteomics, 2016, 15, 45-56.	3.8	68
28	Using the CPTAC Assay Portal to Identify and Implement Highly Characterized Targeted Proteomics Assays. Methods in Molecular Biology, 2016, 1410, 223-236.	0.9	33
29	Development and verification of the PAM50-based Prosigna breast cancer gene signature assay. BMC Medical Genomics, 2015, 8, 54.	1.5	352
30	Comprehensive Quantitative Analysis of Ovarian and Breast Cancer Tumor Peptidomes. Journal of Proteome Research, 2015, 14, 422-433.	3.7	26
31	Estrogen Receptor Expression Is High but Is of Lower Intensity in Tubular Carcinoma Than in Well-Differentiated Invasive Ductal Carcinoma. Archives of Pathology and Laboratory Medicine, 2014, 138, 1507-1513.	2.5	3
32	CPTAC Assay Portal: a repository of targeted proteomic assays. Nature Methods, 2014, 11, 703-704.	19.0	150
33	Proteogenomic characterization of human colon and rectal cancer. Nature, 2014, 513, 382-387.	27.8	1,219
34	Ischemia in Tumors Induces Early and Sustained Phosphorylation Changes in Stress Kinase Pathways but Does Not Affect Global Protein Levels. Molecular and Cellular Proteomics, 2014, 13, 1690-1704.	3.8	323
35	Endocrine-Therapy-Resistant ESR1 Variants Revealed by Genomic Characterization of Breast-Cancer-Derived Xenografts. Cell Reports, 2013, 4, 1116-1130.	6.4	539
36	Responsiveness of Intrinsic Subtypes to Adjuvant Anthracycline Substitution in the NCIC.CTG MA.5 Randomized Trial. Clinical Cancer Research, 2012, 18, 2402-2412.	7.0	132

SHERRI R DAVIES

#	Article	IF	CITATIONS
37	Phosphatidyl-inositol-3-kinase alpha catalytic subunit mutation and response to neoadjuvant endocrine therapy for estrogen receptor positive breast cancer. Breast Cancer Research and Treatment, 2010, 119, 379-390.	2.5	122
38	Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature, 2010, 464, 999-1005.	27.8	1,077
39	A Comparison of PAM50 Intrinsic Subtyping with Immunohistochemistry and Clinical Prognostic Factors in Tamoxifen-Treated Estrogen Receptor–Positive Breast Cancer. Clinical Cancer Research, 2010, 16, 5222-5232.	7.0	676
40	Met induces diverse mammary carcinomas in mice and is associated with human basal breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12909-12914.	7.1	105
41	<i>PIK3CA</i> and <i>PIK3CB</i> Inhibition Produce Synthetic Lethality when Combined with Estrogen Deprivation in Estrogen Receptor–Positive Breast Cancer. Cancer Research, 2009, 69, 3955-3962.	0.9	198
42	Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes. Journal of Clinical Oncology, 2009, 27, 1160-1167.	1.6	3,730
43	Ki67 Index, HER2 Status, and Prognosis of Patients With Luminal B Breast Cancer. Journal of the National Cancer Institute, 2009, 101, 736-750.	6.3	1,844
44	A novel tumor necrosis factor α–responsive CCAAT/enhancer binding protein site regulates expression of the cartilageâ€derived retinoic acid–sensitive protein gene in cartilage. Arthritis and Rheumatism, 2008, 58, 1366-1376.	6.7	12
45	Site-1 protease is essential for endochondral bone formation in mice. Journal of Cell Biology, 2007, 179, 687-700.	5.2	55
46	Computational identification and functional validation of regulatory motifs in cartilage-expressed genes. Genome Research, 2007, 17, 1438-1447.	5.5	30
47	Site-1 protease is essential for endochondral bone formation in mice. Journal of Experimental Medicine, 2007, 204, i28-i28.	8.5	0
48	A promoter element of the CD-RAP gene is required for repression of gene expression in non-cartilage tissues in vitro and in vivo. Journal of Cellular Biochemistry, 2006, 97, 857-868.	2.6	13
49	Alternative Splicing of Type II Procollagen Exon 2 Is Regulated by the Combination of a Weak 5′ Splice Site and an Adjacent Intronic Stem-loop Cis Element. Journal of Biological Chemistry, 2005, 280, 32700-32711.	3.4	40
50	In vivo human Cartilage Oligomeric Matrix Protein (COMP) promoter activity. Matrix Biology, 2005, 24, 539-549.	3.6	16
51	Tissue-restricted expression of the Cdrap/Mia gene within a conserved multigenic housekeeping locus. Genomics, 2004, 83, 667-678.	2.9	7
52	Distribution of the Transcription Factors Sox9, AP-2, and [Delta]EF1 in Adult Murine Articular and Meniscal Cartilage and Growth Plate. Journal of Histochemistry and Cytochemistry, 2002, 50, 1059-1065.	2.5	35
53	Recombinant human osteogenic protein 1 is a potent stimulator of the synthesis of cartilage proteoglycans and collagens by human articular chondrocytes. Arthritis and Rheumatism, 1996, 39, 1896-1904.	6.7	235
54	Doxycycline Inhibits Type X Collagen Synthesis in Avian Hypertrophic Chondrocyte Cultures. Journal of Biological Chemistry, 1996, 271, 25966-25970.	3.4	18