Thomas Lütteke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5813201/publications.pdf

Version: 2024-02-01

61 papers 3,459 citations

279798 23 h-index 243625 44 g-index

64 all docs

64
docs citations

64 times ranked 4657 citing authors

#	Article	IF	CITATIONS
1	Glycosciences.de: Databases and Tools to Support Research in Glycomics and Glycoproteomics. , 2021, , 432-438.		O
2	BioHackathon 2015: Semantics of data for life sciences and reproducible research. F1000Research, 2020, 9, 136.	1.6	5
3	Updates to the Symbol Nomenclature for Glycans guidelines. Glycobiology, 2019, 29, 620-624.	2.5	292
4	Polysialic Acid Modulates the Binding of External Lactoferrin in Neutrophil Extracellular Traps. Biology, 2019, 8, 20.	2.8	14
5	Glycosciences.DB: an annotated data collection linking glycomics and proteomics data (2018 update). Nucleic Acids Research, 2019, 47, D1195-D1201.	14.5	66
6	Making glycoproteins a little bit sweeter with <i>PDB-REDO </i> Structural Biology Communications, 2018, 74, 463-472.	0.8	18
7	GLYDE-II: The GLYcan data exchange format. Perspectives in Science, 2017, 11, 24-30.	0.6	4
8	Lysozyme's lectin-like characteristics facilitates its immune defense function. Quarterly Reviews of Biophysics, 2017, 50, e9.	5.7	29
9	Tissue and time specific expression pattern of interferon regulated genes in the chicken. BMC Genomics, 2017, 18, 264.	2.8	19
10	Carbohydrate 3D structure validation. Current Opinion in Structural Biology, 2017, 44, 9-17.	5.7	25
11	Individual Impact of Distinct Polysialic Acid Chain Lengths on the Cytotoxicity of Histone H1, H2A, H2B, H3 and H4. Polymers, 2017, 9, 720.	4.5	23
12	Is Polysialylated NCAM Not Only a Regulator during Brain Development But also during the Formation of Other Organs?. Biology, 2017, 6, 27.	2.8	27
13	Artificial Polysialic Acid Chains as Sialidase-Resistant Molecular-Anchors to Accumulate Particles on Neutrophil Extracellular Traps. Frontiers in Immunology, 2017, 8, 1229.	4.8	16
14	Translation and Validation of Carbohydrate Residue Names with MonosaccharideDB Routines. , 2017, , 29-40.		3
15	Glycan Data Retrieval and Analysis Using GLYCOSCIENCES.de Applications. , 2017, , 335-350.		6
16	Molecular Basis of the Receptor Interactions of Polysialic Acid (polySia), polySia Mimetics, and Sulfated Polysaccharides. ChemMedChem, 2016, 11, 990-1002.	3 . 2	11
17	Structure-Function Relationships of Antimicrobial Peptides and Proteins with Respect to Contact Molecules on Pathogen Surfaces. Current Topics in Medicinal Chemistry, 2015, 16, 89-98.	2.1	18
18	Symbol Nomenclature for Graphical Representations of Glycans. Glycobiology, 2015, 25, 1323-1324.	2.5	818

#	Article	IF	CITATIONS
19	GlycoRDF: an ontology to standardize glycomics data in RDF. Bioinformatics, 2015, 31, 919-925.	4.1	51
20	Development of the ECODAB into a relational database for Escherichia coli O-antigens and other bacterial polysaccharides. Glycobiology, 2015, 25, 341-347.	2.5	45
21	Statistical Analysis of Amino Acids in the Vicinity of Carbohydrate Residues Performed by GlyVicinity. Methods in Molecular Biology, 2015, 1273, 215-226.	0.9	13
22	Tools to Assist Determination and Validation of Carbohydrate 3D Structure Data. Methods in Molecular Biology, 2015, 1273, 229-240.	0.9	16
23	Handling and Conversion of Carbohydrate Sequence Formats and Monosaccharide Notation. Methods in Molecular Biology, 2015, 1273, 43-54.	0.9	12
24	Using NMR Data on GLYCOSCIENCES.de. Methods in Molecular Biology, 2015, 1273, 87-95.	0.9	12
25	Databases and Tools of GLYCOSCIENCES.de Web Server. , 2015, , 233-239.		2
26	Problems and Pitfalls of Residue Notation in Glycoinformatics. , 2015, , 251-257.		2
27	BioHackathon series in 2011 and 2012: penetration of ontology and linked data in life science domains. Journal of Biomedical Semantics, 2014, 5, 5.	1.6	47
28	Toolboxes for a standardised and systematic study of glycans. BMC Bioinformatics, 2014, 15, S9.	2.6	58
29	Databases and Tools of the GLYCOSCIENCES.de Web Server. , 2014, , 1-6.		0
30	Problems and Pitfalls of Residue Notation in Glycoinformatics., 2014,, 1-7.		0
31	Soluble polysialylated NCAM: a novel player of the innate immune system in the lung. Cellular and Molecular Life Sciences, 2013, 70, 3695-3708.	5.4	44
32	Introducing glycomics data into the Semantic Web. Journal of Biomedical Semantics, 2013, 4, 39.	1.6	46
33	GlycoCD: a repository for carbohydrate-related CD antigens. Bioinformatics, 2012, 28, 2553-2555.	4.1	13
34	The SLC10 Carrier Family. Current Topics in Membranes, 2012, 70, 105-168.	0.9	108
35	The use of glycoinformatics in glycochemistry. Beilstein Journal of Organic Chemistry, 2012, 8, 915-929.	2.2	22
36	<i>In silico</i> Study on Sulfated and Non-Sulfated Carbohydrate Chains from Proteoglycans in <i>Cnidaria</i> and Interaction with Collagen. Open Journal of Physical Chemistry, 2012, 02, 123-133.	0.6	10

#	Article	IF	Citations
37	A New Generation of Crystallographic Validation Tools for the Protein Data Bank. Structure, 2011, 19, 1395-1412.	3.3	405
38	EUROCarbDB: An open-access platform for glycoinformatics. Glycobiology, 2011, 21, 493-502.	2.5	116
39	Carbohydrate Structure Databases. , 2010, , 211-233.		0
40	Why Structurally Different Cyclic Peptides Can Be Glycomimetics of the HNK-1 Carbohydrate Antigen. Journal of the American Chemical Society, 2010, 132, 96-105.	13.7	32
41	Bioinformatics Databases and Applications Available for Glycobiology and Glycomics. , 2010, , 59-90.		3
42	Analysis and validation of carbohydrate three-dimensional structures. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 156-168.	2.5	64
43	A lectin from the Chinese bird-hunting spider binds sialic acids. Carbohydrate Research, 2009, 344, 1515-1525.	2.3	15
44	Data Mining the PDB for Glyco-Related Data. , 2009, 534, 293-310.		17
45	Web Resources for the Glycoscientist. ChemBioChem, 2008, 9, 2155-2160.	2.6	22
46	GlycoMapsDB: a database of the accessible conformational space of glycosidic linkages. Nucleic Acids Research, 2007, 35, 287-290.	14.5	75
47	The protein data bank (PDB) as a versatile resource for glycobiology and glycomics. Biocatalysis and Biotransformation, 2006, 24, 147-155.	2.0	9
48	GLYCOSCIENCES.de: an Internet portal to support glycomics and glycobiology research. Glycobiology, 2006, 16, 71R-81R.	2.5	236
49	The role of informatics in glycobiology research with special emphasis on automatic interpretation of MS spectra. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 568-577.	2.4	63
50	Carbohydrate Structure Suite (CSS): analysis of carbohydrate 3D structures derived from the PDB. Nucleic Acids Research, 2004, 33, D242-D246.	14.5	188
51	pdb-care (PDB carbohydrate residue check): a program to support annotation of complex carbohydrate structures in PDB files. BMC Bioinformatics, 2004, 5, 69.	2.6	152
52	Data mining the protein data bank: automatic detection and assignment of carbohydrate structures. Carbohydrate Research, 2004, 339, 1015-1020.	2.3	105
53	LOX-DB-a database on lipoxygenases. Bioinformatics, 2003, 19, 2482-2483.	4.1	20
54	Software Tools for Semi-automatic Interpretation of Mass Spectra of Glycans., 0,, 257-268.		1

THOMAS LÃ1/4TTEKE

#	Article	IF	Citations
55	NMR Databases and Tools for Automatic Interpretation of Spectra of Carbohydrates. , 0, , 295-309.		3
56	Automatic Spectrum Interpretation Based on Increment Rules: CASPER., 0,, 311-320.		2
57	Synergy of Computational and Experimental Methods in Carbohydrate 3D Structure Determination and Validation., 0,, 389-412.		1
58	Statistical Analysis of Protein-Carbohydrate Complexes Contained in the PDB., 0, , 433-445.		0
59	Digital Representations of Oligo- and Polysaccharides. , 0, , 49-68.		2
60	Other Databases Providing Glycoenzyme Data., 0,, 119-123.		0
61	Glycosylation of Proteins. , 0, , 143-162.		O