
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5813201/publications.pdf Version: 2024-02-01

ΤΗΟΜΛς Ι Δ1/1 ΤΤΕΚΕ

#	Article	IF	CITATIONS
1	Symbol Nomenclature for Graphical Representations of Glycans. Glycobiology, 2015, 25, 1323-1324.	2.5	818
2	A New Generation of Crystallographic Validation Tools for the Protein Data Bank. Structure, 2011, 19, 1395-1412.	3.3	405
3	Updates to the Symbol Nomenclature for Glycans guidelines. Glycobiology, 2019, 29, 620-624.	2.5	292
4	GLYCOSCIENCES.de: an Internet portal to support glycomics and glycobiology research. Glycobiology, 2006, 16, 71R-81R.	2.5	236
5	Carbohydrate Structure Suite (CSS): analysis of carbohydrate 3D structures derived from the PDB. Nucleic Acids Research, 2004, 33, D242-D246.	14.5	188
6	pdb-care (PDB carbohydrate residue check): a program to support annotation of complex carbohydrate structures in PDB files. BMC Bioinformatics, 2004, 5, 69.	2.6	152
7	EUROCarbDB: An open-access platform for glycoinformatics. Glycobiology, 2011, 21, 493-502.	2.5	116
8	The SLC10 Carrier Family. Current Topics in Membranes, 2012, 70, 105-168.	0.9	108
9	Data mining the protein data bank: automatic detection and assignment of carbohydrate structures. Carbohydrate Research, 2004, 339, 1015-1020.	2.3	105
10	GlycoMapsDB: a database of the accessible conformational space of glycosidic linkages. Nucleic Acids Research, 2007, 35, 287-290.	14.5	75
11	Glycosciences.DB: an annotated data collection linking glycomics and proteomics data (2018 update). Nucleic Acids Research, 2019, 47, D1195-D1201.	14.5	66
12	Analysis and validation of carbohydrate three-dimensional structures. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 156-168.	2.5	64
13	The role of informatics in glycobiology research with special emphasis on automatic interpretation of MS spectra. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 568-577.	2.4	63
14	Toolboxes for a standardised and systematic study of glycans. BMC Bioinformatics, 2014, 15, S9.	2.6	58
15	GlycoRDF: an ontology to standardize glycomics data in RDF. Bioinformatics, 2015, 31, 919-925.	4.1	51
16	BioHackathon series in 2011 and 2012: penetration of ontology and linked data in life science domains. Journal of Biomedical Semantics, 2014, 5, 5.	1.6	47
17	Introducing glycomics data into the Semantic Web. Journal of Biomedical Semantics, 2013, 4, 39.	1.6	46
18	Development of the ECODAB into a relational database for Escherichia coli O-antigens and other bacterial polysaccharides. Glycobiology, 2015, 25, 341-347.	2.5	45

#	Article	IF	CITATIONS
19	Soluble polysialylated NCAM: a novel player of the innate immune system in the lung. Cellular and Molecular Life Sciences, 2013, 70, 3695-3708.	5.4	44
20	Why Structurally Different Cyclic Peptides Can Be Glycomimetics of the HNK-1 Carbohydrate Antigen. Journal of the American Chemical Society, 2010, 132, 96-105.	13.7	32
21	Lysozyme's lectin-like characteristics facilitates its immune defense function. Quarterly Reviews of Biophysics, 2017, 50, e9.	5.7	29
22	Is Polysialylated NCAM Not Only a Regulator during Brain Development But also during the Formation of Other Organs?. Biology, 2017, 6, 27.	2.8	27
23	Carbohydrate 3D structure validation. Current Opinion in Structural Biology, 2017, 44, 9-17.	5.7	25
24	Individual Impact of Distinct Polysialic Acid Chain Lengths on the Cytotoxicity of Histone H1, H2A, H2B, H3 and H4. Polymers, 2017, 9, 720.	4.5	23
25	Web Resources for the Glycoscientist. ChemBioChem, 2008, 9, 2155-2160.	2.6	22
26	The use of glycoinformatics in glycochemistry. Beilstein Journal of Organic Chemistry, 2012, 8, 915-929.	2.2	22
27	LOX-DBa database on lipoxygenases. Bioinformatics, 2003, 19, 2482-2483.	4.1	20
28	Tissue and time specific expression pattern of interferon regulated genes in the chicken. BMC Genomics, 2017, 18, 264.	2.8	19
29	Structure-Function Relationships of Antimicrobial Peptides and Proteins with Respect to Contact Molecules on Pathogen Surfaces. Current Topics in Medicinal Chemistry, 2015, 16, 89-98.	2.1	18
30	Making glycoproteins a little bit sweeter with <i>PDB-REDO</i> . Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 463-472.	0.8	18
31	Data Mining the PDB for Glyco-Related Data. , 2009, 534, 293-310.		17
32	Artificial Polysialic Acid Chains as Sialidase-Resistant Molecular-Anchors to Accumulate Particles on Neutrophil Extracellular Traps. Frontiers in Immunology, 2017, 8, 1229.	4.8	16
33	Tools to Assist Determination and Validation of Carbohydrate 3D Structure Data. Methods in Molecular Biology, 2015, 1273, 229-240.	0.9	16
34	A lectin from the Chinese bird-hunting spider binds sialic acids. Carbohydrate Research, 2009, 344, 1515-1525.	2.3	15
35	Polysialic Acid Modulates the Binding of External Lactoferrin in Neutrophil Extracellular Traps. Biology, 2019, 8, 20.	2.8	14
36	GlycoCD: a repository for carbohydrate-related CD antigens. Bioinformatics, 2012, 28, 2553-2555.	4.1	13

#	Article	IF	CITATIONS
37	Statistical Analysis of Amino Acids in the Vicinity of Carbohydrate Residues Performed by GlyVicinity. Methods in Molecular Biology, 2015, 1273, 215-226.	0.9	13
38	Handling and Conversion of Carbohydrate Sequence Formats and Monosaccharide Notation. Methods in Molecular Biology, 2015, 1273, 43-54.	0.9	12
39	Using NMR Data on GLYCOSCIENCES.de. Methods in Molecular Biology, 2015, 1273, 87-95.	0.9	12
40	Molecular Basis of the Receptor Interactions of Polysialic Acid (polySia), polySia Mimetics, and Sulfated Polysaccharides. ChemMedChem, 2016, 11, 990-1002.	3.2	11
41	<i>In silico</i> Study on Sulfated and Non-Sulfated Carbohydrate Chains from Proteoglycans in <i>Cnidaria</i> and Interaction with Collagen. Open Journal of Physical Chemistry, 2012, 02, 123-133.	0.6	10
42	The protein data bank (PDB) as a versatile resource for glycobiology and glycomics. Biocatalysis and Biotransformation, 2006, 24, 147-155.	2.0	9
43	Glycan Data Retrieval and Analysis Using GLYCOSCIENCES.de Applications. , 2017, , 335-350.		6
44	BioHackathon 2015: Semantics of data for life sciences and reproducible research. F1000Research, 2020, 9, 136.	1.6	5
45	GLYDE-II: The GLYcan data exchange format. Perspectives in Science, 2017, 11, 24-30.	0.6	4
46	NMR Databases and Tools for Automatic Interpretation of Spectra of Carbohydrates. , 0, , 295-309.		3
47	Translation and Validation of Carbohydrate Residue Names with MonosaccharideDB Routines. , 2017, , 29-40.		3
48	Bioinformatics Databases and Applications Available for Glycobiology and Glycomics. , 2010, , 59-90.		3
49	Automatic Spectrum Interpretation Based on Increment Rules: CASPER. , 0, , 311-320.		2
50	Digital Representations of Oligo- and Polysaccharides. , 0, , 49-68.		2
51	Databases and Tools of GLYCOSCIENCES.de Web Server. , 2015, , 233-239.		2
52	Problems and Pitfalls of Residue Notation in Glycoinformatics. , 2015, , 251-257.		2
53	Software Tools for Semi-automatic Interpretation of Mass Spectra of Glycans. , 0, , 257-268.		1
54	Synergy of Computational and Experimental Methods in Carbohydrate 3D Structure Determination and Validation. , 0, , 389-412.		1

4

#	Article	IF	CITATIONS
55	Statistical Analysis of Protein-Carbohydrate Complexes Contained in the PDB. , 0, , 433-445.		0
56	Other Databases Providing Glycoenzyme Data. , 0, , 119-123.		0
57	Glycosylation of Proteins. , 0, , 143-162.		0
58	Carbohydrate Structure Databases. , 2010, , 211-233.		0
59	Glycosciences.de: Databases and Tools to Support Research in Glycomics and Glycoproteomics. , 2021, , 432-438.		Ο
60	Databases and Tools of the GLYCOSCIENCES.de Web Server. , 2014, , 1-6.		0
61	Problems and Pitfalls of Residue Notation in Glycoinformatics. , 2014, , 1-7.		0