
Rachel R Caspi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5813085/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Uveitisâ€mediated immune cell invasion through the extracellular matrix of the lens capsule. FASEB Journal, 2022, 36, e21995.	0.2	5
2	Draft Reference Genome Sequence of Corynebacterium mastitidis RC, an Ocular Commensal, Isolated from Mouse Conjunctiva. Microbiology Resource Announcements, 2022, , e0018722.	0.3	1
3	IL-27–producing B-1a cells suppress neuroinflammation and CNS autoimmune diseases. Proceedings of the United States of America, 2021, 118, .	3.3	26
4	The Cytokine IL-17A Limits Th17 Pathogenicity via a Negative Feedback Loop Driven by Autocrine Induction of IL-24. Immunity, 2020, 53, 384-397.e5.	6.6	101
5	T cell-intrinsic role for Nod2 in protection against Th17-mediated uveitis. Nature Communications, 2020, 11, 5406.	5.8	17
6	Autoimmunity to neuroretina in the concurrent absence of IFN-Î ³ and IL-17A is mediated by a GM-CSF-driven eosinophilic inflammation. Journal of Autoimmunity, 2020, 114, 102507.	3.0	8
7	Microbiota as Drivers and as Therapeutic Targets in Ocular and Tissue Specific Autoimmunity. Frontiers in Cell and Developmental Biology, 2020, 8, 606751.	1.8	11
8	Regulated Tristetraprolin Overexpression Dampens the Development and Pathogenesis of Experimental Autoimmune Uveitis. Frontiers in Immunology, 2020, 11, 583510.	2.2	4
9	A novel role for lipoxin A4 in driving a lymph node–eye axis that controls autoimmunity to the neuroretina. ELife, 2020, 9, .	2.8	12
10	Tofacitinib inhibits the development of experimental autoimmune uveitis and reduces the proportions of Th1 but not of Th17 cells. Molecular Vision, 2020, 26, 641-651.	1.1	10
11	Type I Interferon Therapy Limits CNS Autoimmunity by Inhibiting CXCR3-Mediated Trafficking of Pathogenic Effector T Cells. Cell Reports, 2019, 28, 486-497.e4.	2.9	19
12	Tellurium Compounds Prevent and Reverse Type-1 Diabetes in NOD Mice by Modulating α4β7 Integrin Activity, IL-1β, and T Regulatory Cells. Frontiers in Immunology, 2019, 10, 979.	2.2	11
13	Interleukin 22 ameliorates neuropathology and protects from central nervous system autoimmunity. Journal of Autoimmunity, 2019, 102, 65-76.	3.0	21
14	Microbiome and Autoimmune Uveitis. Frontiers in Immunology, 2019, 10, 232.	2.2	93
15	AS101 ameliorates experimental autoimmune uveitis by regulating Th1 and Th17 responses and inducing Treg cells. Journal of Autoimmunity, 2019, 100, 52-61.	3.0	26
16	Pseudovirus rVSVΔG-ZEBOV-GP Infects Neurons in Retina and CNS, Causing Apoptosis and Neurodegeneration in Neonatal Mice. Cell Reports, 2019, 26, 1718-1726.e4.	2.9	29
17	Clinical and Functional Evaluation of Ocular Inflammatory Disease Using the Model of Experimental Autoimmune Uveitis. Methods in Molecular Biology, 2019, 1899, 211-227.	0.4	22
18	Targeting CD6 for the treatment of experimental autoimmune uveitis. Journal of Autoimmunity, 2018, 90, 84-93.	3.0	27

#	Article	IF	CITATIONS
19	STAT-3–independent production of IL-17 by mouse innate-like αβ T cells controls ocular infection. Journal of Experimental Medicine, 2018, 215, 1079-1090.	4.2	25
20	Visions of Eye Commensals: The Known and the Unknown About How the Microbiome Affects Eye Disease. BioEssays, 2018, 40, e1800046.	1.2	38
21	Tolerance Induction in Relation to the Eye. Frontiers in Immunology, 2018, 9, 2304.	2.2	32
22	TMP778, a selective inhibitor of RORÎ ³ t, suppresses experimental autoimmune uveitis development, but affects both Th17 and Th1 cell populations. European Journal of Immunology, 2018, 48, 1810-1816.	1.6	10
23	IL-20 receptor cytokines in autoimmune diseases. Journal of Leukocyte Biology, 2018, 104, 953-959.	1.5	46
24	ZIKA virus infection causes persistent chorioretinal lesions. Emerging Microbes and Infections, 2018, 7, 1-15.	3.0	45
25	Analysis of Th Cell-related Cytokine Production in Behçet Disease Patients with Uveitis Before and After Infliximab Treatment. Ocular Immunology and Inflammation, 2017, 25, 52-61.	1.0	16
26	Commensal microbiota as a potential trigger of autoimmune uveitis. Expert Review of Clinical Immunology, 2017, 13, 291-293.	1.3	26
27	Gut microbiota as a source of a surrogate antigen that triggers autoimmunity in an immune privileged site. Gut Microbes, 2017, 8, 59-66.	4.3	48
28	IL-12p35 induces expansion of IL-10 and IL-35-expressing regulatory B cells and ameliorates autoimmune disease. Nature Communications, 2017, 8, 719.	5.8	150
29	An Ocular Commensal Protects against Corneal Infection by Driving an Interleukin-17 Response from Mucosal Î ³ δT Cells. Immunity, 2017, 47, 148-158.e5.	6.6	216
30	Immunopathogenesis of Experimental Uveitic Diseases \hat{a} 1 , 2017, , .		0
31	The Small Tellurium Compound AS101 Ameliorates Rat Crescentic Glomerulonephritis: Association with Inhibition of Macrophage Caspase-1 Activity via Very Late Antigen-4 Inactivation. Frontiers in Immunology, 2017, 8, 240.	2.2	9
32	Complement Component C4 Regulates the Development of Experimental Autoimmune Uveitis through a T Cell-Intrinsic Mechanism. Frontiers in Immunology, 2017, 8, 1116.	2.2	9
33	IL-12p35 Inhibits Neuroinflammation and Ameliorates Autoimmune Encephalomyelitis. Frontiers in Immunology, 2017, 8, 1258.	2.2	28
34	Regulation of Autoimmunity by the Microbiome. DNA and Cell Biology, 2016, 35, 455-458.	0.9	26
35	Tertiary Lymphoid Tissue Forms in Retinas of Mice with Spontaneous Autoimmune Uveitis and Has Consequences on Visual Function. Journal of Immunology, 2016, 196, 1013-1025.	0.4	34
36	Mincle Activation and the Syk/Card9 Signaling Axis Are Central to the Development of Autoimmune Disease of the Eye. Journal of Immunology, 2016, 196, 3148-3158.	0.4	57

#	Article	IF	CITATIONS
37	Complement anaphylatoxin receptors C3aR and C5aR are required in the pathogenesis of experimental autoimmune uveitis. Journal of Leukocyte Biology, 2016, 99, 447-454.	1.5	29
38	Preparation of Protein-containing Extracts from Microbiota-rich Intestinal Contents. Bio-protocol, 2016, 6, .	0.2	3
39	Characterization of a New Epitope of IRBP That Induces Moderate to Severe Uveoretinitis in Mice With H-2 ^b Haplotype. , 2015, 56, 5439.		35
40	Immune mechanisms in inflammatory and degenerative eye disease. Trends in Immunology, 2015, 36, 354-363.	2.9	148
41	Retina-Specific T Regulatory Cells Bring About Resolution and Maintain Remission of Autoimmune Uveitis. Journal of Immunology, 2015, 194, 3011-3019.	0.4	79
42	Microbiota-Dependent Activation of an Autoreactive T Cell Receptor Provokes Autoimmunity in an Immunologically Privileged Site. Immunity, 2015, 43, 343-353.	6.6	324
43	NK-DC crosstalk controls the autopathogenic Th17 response through an innate IFN-γ–IL-27 axis. Journal of Experimental Medicine, 2015, 212, 1739-1752.	4.2	66
44	Divergent paths for the selection of immunodominant epitopes from distinct antigenic sources. Nature Communications, 2014, 5, 5369.	5.8	62
45	Immune Privilege and the Philosophy of Immunology. Frontiers in Immunology, 2014, 5, 110.	2.2	21
46	IL-27p28 inhibits central nervous system autoimmunity by concurrently antagonizing Th1 and Th17 responses. Journal of Autoimmunity, 2014, 50, 12-22.	3.0	62
47	Understanding autoimmunity in the eye: from animal models to novel therapies. Discovery Medicine, 2014, 17, 155-62.	0.5	21
48	Breakdown of immune privilege and spontaneous autoimmunity in mice expressing a transgenic T cell receptor specific for a retinal autoantigen. Journal of Autoimmunity, 2013, 44, 21-33.	3.0	93
49	Use of Optical Coherence Tomography and Electroretinography to Evaluate Retinal Pathology in a Mouse Model of Autoimmune Uveitis. PLoS ONE, 2013, 8, e63904.	1.1	44
50	Comparative Analysis of Induced vs. Spontaneous Models of Autoimmune Uveitis Targeting the Interphotoreceptor Retinoid Binding Protein. PLoS ONE, 2013, 8, e72161.	1.1	43
51	The Living Eye "Disarms―Uncommitted Autoreactive T Cells by Converting Them to Foxp3+ Regulatory Cells following Local Antigen Recognition. Journal of Immunology, 2012, 188, 1742-1750.	0.4	78
52	Cytokines in Autoimmune Uveitis. Journal of Interferon and Cytokine Research, 2011, 31, 733-744.	0.5	144
53	Th1 and Th17 cells. Annals of the New York Academy of Sciences, 2010, 1183, 211-221.	1.8	337
54	The Role of TLR2, TRL3, TRL4, and TRL9 Signaling in the Pathogenesis of Autoimmune Disease in a Retinal		59

The Role of TLR2, TRL3, TRL4, and TRL9 Signaling in the Autoimmunity Model. , 2010, 51, 3092.

#	Article	IF	CITATIONS
55	A look at autoimmunity and inflammation in the eye. Journal of Clinical Investigation, 2010, 120, 3073-3083.	3.9	379
56	New perspectives on effector mechanisms in uveitis. Seminars in Immunopathology, 2008, 30, 135-143.	2.8	87
57	Autoimmunity in the immune privileged eye: pathogenic and regulatory T cells. Immunologic Research, 2008, 42, 41-50.	1.3	82
58	Repertoire Analysis and New Pathogenic Epitopes of IRBP in C57BL/6 (H-2 ^b) and B10.RIII (H-2 ^r) Mice. , 2008, 49, 1946.		37
59	Mouse Models of Experimental Autoimmune Uveitis. Ophthalmic Research, 2008, 40, 169-174.	1.0	96
60	Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. Journal of Experimental Medicine, 2008, 205, 799-810.	4.2	627
61	Cutting Edge: NKT Cells Constitutively Express IL-23 Receptor and RORÎ ³ t and Rapidly Produce IL-17 upon Receptor Ligation in an IL-6-Independent Fashion. Journal of Immunology, 2008, 180, 5167-5171.	0.4	363
62	Activation of Invariant NKT Cells Ameliorates Experimental Ocular Autoimmunity by A Mechanism Involving Innate IFN-γ Production and Dampening of the Adaptive Th1 and Th17 Responses. Journal of Immunology, 2008, 181, 4791-4797.	0.4	70
63	Eosinophilâ€derived neurotoxin acts as an alarmin to activate TLR2â€MyD88 signal pathway in dendritic cells and enhance Th2 immune responses. FASEB Journal, 2008, 22, 672.17.	0.2	Ο
64	Altered Chemokine Profile Associated with Exacerbated Autoimmune Pathology under Conditions of Genetic Interferon-Î ³ Deficiency. , 2007, 48, 4616.		55
65	Ocular autoimmunity: the price of privilege?. Immunological Reviews, 2006, 213, 23-35.	2.8	137
66	Essential Role of the MyD88 Pathway, but Nonessential Roles of TLRs 2, 4, and 9, in the Adjuvant Effect Promoting Th1-Mediated Autoimmunity. Journal of Immunology, 2005, 175, 6303-6310.	0.4	133
67	Antigen/MHC Class II/Ig Dimers for Study of Uveitogenic T Cells: IRBP p161–180 Presented by both IA and IE Molecules. , 2005, 46, 3769.		17
68	Regulation, Counter-Regulation, and Immunotherapy of Autoimmune Responses to Immunologically Privileged Retinal Antigens. Immunologic Research, 2003, 27, 149-160.	1.3	19
69	Experimental Autoimmune Uveoretinitis in the Rat and Mouse. Current Protocols in Immunology, 2003, 53, Unit 15.6.	3.6	111
70	A humanized model of experimental autoimmune uveitis in HLA class II transgenic mice. Journal of Clinical Investigation, 2003, 111, 1171-1180.	3.9	80
71	TH1 AND TH2 RESPONSES IN PATHOGENESIS AND REGULATION OF EXPERIMENTAL AUTOIMMUNE UVEORETINITIS. International Reviews of Immunology, 2002, 21, 197-208.	1.5	121
72	Residues 1–20 of IRBP and Whole IRBP Elicit Different Uveitogenic and Immunological Responses in Interferon Gamma Deficient Mice. Experimental Eye Research, 2000, 71, 111-118.	1.2	40

#	Article	IF	CITATIONS
73	Susceptibility to Autoimmune Disease and Drug Addiction in Inbred Rats: Are There Mechanistic Factors in Common Related to Abnormalities in Hypothalamicâ€Pituitaryâ€Adrenal Axis and Stress Response Function?. Annals of the New York Academy of Sciences, 2000, 917, 784-796.	1.8	23
74	Interleukin 12 Protects from a T Helper Type 1–mediated Autoimmune Disease, Experimental Autoimmune Uveitis, through a Mechanism Involving Interferon γ, Nitric Oxide, and Apoptosis. Journal of Experimental Medicine, 1999, 189, 219-230.	4.2	193
75	Acute immunosuppression and syngeneic bone marrow transplantation in ocular autoimmunity abort disease, but do not result in induction of long-term protection. Ocular Immunology and Inflammation, 1998, 6, 163-172.	1.0	Ο
76	T cell mechanisms in experimental autoimmune uveoretinitis: Susceptibility is a function of the cytokine response profile. Eye, 1997, 11, 209-212.	1.1	75
77	Prevention of experimental autoimmune uveoretinitis by intrathymic S-antigen injection. Ocular Immunology and Inflammation, 1997, 5, 165-172.	1.0	7
78	Postâ€ŧhymectomy Murine Experimental Autoimmune Oophoritis Is Associated With Reduced Natural Killer Cell Activity. American Journal of Reproductive Immunology, 1997, 38, 360-365.	1.2	13
79	Susceptibility to Murine Experimental Autoimmune Oophoritis Is Associated With Genes Outside the Major Histocompatibility Complex (MHC). American Journal of Reproductive Immunology, 1996, 36, 107-110.	1.2	12
80	Immunotolerance and prevention of ocular autoimmune disease. Current Eye Research, 1995, 14, 857-864.	0.7	13
81	Use of ACAID to suppress interphotoreceptor retinoid binding protein-induced experimental autoimmune uveitis. Current Eye Research, 1992, 11, 97-100.	0.7	21
82	Dual effect of ciliary body cells on T lymphocyte proliferation. European Journal of Immunology, 1990, 20, 2457-2463.	1.6	38
83	Cyclosporine and Dexamethasone Inhibit T-Lymphocyte MHC Class II Antigens and IL-2 Receptor Expression in Experimental Autoimmune Uveitis. Immunological Investigations, 1987, 16, 319-331.	1.0	16