Carolina Simo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5812748/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Foodomics: MSâ€based strategies in modern food science and nutrition. Mass Spectrometry Reviews, 2012, 31, 49-69.	5.4	327
2	Present and Future Challenges in Food Analysis: Foodomics. Analytical Chemistry, 2012, 84, 10150-10159.	6.5	223
3	Extensive Analysis of the Cytoplasmic Proteome of Human Erythrocytes Using the Peptide Ligand Library Technology and Advanced Mass Spectrometry. Molecular and Cellular Proteomics, 2008, 7, 2254-2269.	3.8	208
4	Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis, 2010, 31, 205-228.	2.4	163
5	Toward a Predictive Model of Alzheimer's Disease Progression Using Capillary Electrophoresis–Mass Spectrometry Metabolomics. Analytical Chemistry, 2012, 84, 8532-8540.	6.5	152
6	Capillary electrophoresis-mass spectrometry in food analysis. Electrophoresis, 2005, 26, 1306-1318.	2.4	112
7	CEâ€TOF MS analysis of complex protein hydrolyzates from genetically modified soybeans – A tool for foodomics. Electrophoresis, 2010, 31, 1175-1183.	2.4	109
8	Global Foodomics strategy to investigate the health benefits of dietary constituents. Journal of Chromatography A, 2012, 1248, 139-153.	3.7	107
9	Metabolomics, peptidomics and proteomics applications of capillary electrophoresis-mass spectrometry in Foodomics: A review. Analytica Chimica Acta, 2013, 802, 1-13.	5.4	97
10	Capillary electrophoresis-mass spectrometry of basic proteins using a new physically adsorbed polymer coating. Some applications in food analysis. Electrophoresis, 2004, 25, 2056-2064.	2.4	93
11	Advances in Nutrigenomics research: Novel and future analytical approaches to investigate the biological activity of natural compounds and food functions. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 290-304.	2.8	92
12	A new metabolomic workflow for early detection of Alzheimer's disease. Journal of Chromatography A, 2013, 1302, 65-71.	3.7	83
13	<scp>CE</scp> / <scp>LC</scp> â€ <scp>MS</scp> multiplatform for broad metabolomic analysis of dietary polyphenols effect on colon cancer cells proliferation. Electrophoresis, 2012, 33, 2328-2336.	2.4	82
14	Chiral capillary electrophoresis-mass spectrometry of amino acids in foods. Electrophoresis, 2005, 26, 1432-1441.	2.4	81
15	Metabolomics of Genetically Modified Crops. International Journal of Molecular Sciences, 2014, 15, 18941-18966.	4.1	81
16	Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis, 2012, 33, 147-167.	2.4	80
17	Novel MS-based approaches and applications in food metabolomics. TrAC - Trends in Analytical Chemistry, 2013, 52, 100-111.	11.4	80
18	MSâ€based analytical methodologies to characterize genetically modified crops. Mass Spectrometry Reviews, 2011, 30, 396-416.	5.4	79

#	Article	IF	CITATIONS
19	Ion-trap versus time-of-flight mass spectrometry coupled to capillary electrophoresis to analyze biogenic amines in wine. Journal of Chromatography A, 2008, 1195, 150-156.	3.7	72
20	Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis, 2014, 35, 147-169.	2.4	69
21	Chiral electromigration methods in food analysis. Electrophoresis, 2003, 24, 2431-2441.	2.4	66
22	Chiral capillary electrophoresis in food analysis. Electrophoresis, 2010, 31, 2106-2114.	2.4	64
23	The role of direct high-resolution mass spectrometry in foodomics. Analytical and Bioanalytical Chemistry, 2015, 407, 6275-6287.	3.7	63
24	Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis, 2016, 37, 111-141.	2.4	62
25	Analysis of chiral amino acids in cerebrospinal fluid samples linked to different stages of Alzheimer disease. Electrophoresis, 2011, 32, 2757-2764.	2.4	61
26	Faecal Metabolomic Fingerprint after Moderate Consumption of Red Wine by Healthy Subjects. Journal of Proteome Research, 2015, 14, 897-905.	3.7	59
27	Dietary bioactive ingredients to modulate the gut microbiota-derived metabolite TMAO. New opportunities for functional food development. Food and Function, 2020, 11, 6745-6776.	4.6	57
28	Recent transcriptomics advances and emerging applications in food science. TrAC - Trends in Analytical Chemistry, 2013, 52, 142-154.	11.4	54
29	Comprehensive Foodomics Study on the Mechanisms Operating at Various Molecular Levels in Cancer Cells in Response to Individual Rosemary Polyphenols. Analytical Chemistry, 2014, 86, 9807-9815.	6.5	54
30	Sensitive Micellar Electrokinetic Chromatographyâ^'Laser-Induced Fluorescence Method To Analyze Chiral Amino Acids in Orange Juices. Journal of Agricultural and Food Chemistry, 2002, 50, 5288-5293.	5.2	52
31	Performance of Combinatorial Peptide Libraries in Capturing the Low-Abundance Proteome of Red Blood Cells. 1. Behavior of Mono- to Hexapeptides. Analytical Chemistry, 2008, 80, 3547-3556.	6.5	52
32	Effect of dietary polyphenols on <scp>K</scp> 562 leukemia cells: A <scp>F</scp> oodomics approach. Electrophoresis, 2012, 33, 2314-2327.	2.4	51
33	Carrier ampholytes for IEF, on their fortieth anniversary (1967–2007), brought to trial in court: The verdict. Electrophoresis, 2007, 28, 3799-3810.	2.4	50
34	Application of stepwise discriminant analysis to classify commercial orange juices using chiral micellar electrokinetic chromatography-laser induced fluorescence data of amino acids. Electrophoresis, 2004, 25, 2885-2891.	2.4	48
35	Capillary electrophoresis-mass spectrometry of peptides from enzymatic protein hydrolysis: Simulation and optimization. Electrophoresis, 2003, 24, 834-842.	2.4	47
36	Characterization of proteins fromSpirulina platensis microalga using capillary electrophoresis-ion trap-mass spectrometry and capillary electrophoresis-time of flight-mass spectrometry. Electrophoresis, 2005, 26, 2674-2683.	2.4	44

#	Article	IF	CITATIONS
37	Is metabolomics reachable? Different purification strategies of human colon cancer cells provide different CEâ€MS metabolite profiles. Electrophoresis, 2011, 32, 1765-1777.	2.4	44
38	Foodomics strategies for the analysis of transgenic foods. TrAC - Trends in Analytical Chemistry, 2013, 52, 2-15.	11.4	44
39	Nonaqueous and aqueous capillary electrophoresis of synthetic polymers. Journal of Chromatography A, 2005, 1068, 59-73.	3.7	42
40	Capillary electrophoresis-mass spectrometry ofSpirulina platensis proteins obtained by pressurized liquid extraction. Electrophoresis, 2005, 26, 4215-4224.	2.4	42
41	Anionic metabolite profiling by capillary electrophoresis–mass spectrometry using a noncovalent polymeric coating. Orange juice and wine as case studies. Journal of Chromatography A, 2016, 1428, 326-335.	3.7	42
42	Impact of Glutathione-Enriched Inactive Dry Yeast Preparations on the Stability of Terpenes during Model Wine Aging. Journal of Agricultural and Food Chemistry, 2014, 62, 1373-1383.	5.2	41
43	Performance of Combinatorial Peptide Libraries in Capturing the Low-Abundance Proteome of Red Blood Cells. 2. Behavior of Resins Containing Individual Amino Acids. Analytical Chemistry, 2008, 80, 3557-3565.	6.5	40
44	Drug delivery systems: polymers and drugs monitored by capillary electromigration methods. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 797, 37-49.	2.3	37
45	Chiral CEâ€MS. Electrophoresis, 2010, 31, 1442-1456.	2.4	37
46	Combining Peptide Modeling and Capillary Electrophoresisâ^'Mass Spectrometry for Characterization of Enzymes Cleavage Patterns:Â Recombinant versus Natural Bovine Pepsin A. Analytical Chemistry, 2005, 77, 7709-7716.	6.5	33
47	Simulation and optimization of peptide separation by capillary electrophoresis-mass spectrometry. Electrophoresis, 2002, 23, 2288.	2.4	32
48	Fast and sensitive capillary electrophoresis method to quantitatively monitor ibuprofen enantiomers released from polymeric drug delivery systems. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 767, 35-43.	2.3	32
49	Nonaqueous Capillary Electrophoresisâ~'Mass Spectrometry of Synthetic Polymers. Analytical Chemistry, 2004, 76, 335-344.	6.5	32
50	Metabolomics of adherent mammalian cells by capillary electrophoresis-mass spectrometry: HT-29 cells as case study. Journal of Pharmaceutical and Biomedical Analysis, 2015, 110, 83-92.	2.8	30
51	GC-MS based metabolomics of colon cancer cells using different extraction solvents. Analytica Chimica Acta, 2017, 986, 48-56.	5.4	28
52	Nano-liquid Chromatography-orbitrap MS-based Quantitative Proteomics Reveals Differences Between the Mechanisms of Action of Carnosic Acid and Carnosol in Colon Cancer Cells. Molecular and Cellular Proteomics, 2017, 16, 8-22.	3.8	27
53	Analysis of Antioxidants from Orange Juice Obtained by Countercurrent Supercritical Fluid Extraction, Using Micellar Electrokinetic Chromatography and Reverse-Phase Liquid Chromatography. Journal of Agricultural and Food Chemistry, 2002, 50, 6648-6652.	5.2	26
54	An Ultrahigh-Performance Liquid Chromatography–Time-of-Flight Mass Spectrometry Metabolomic Approach to Studying the Impact of Moderate Red-Wine Consumption on Urinary Metabolome. Journal of Proteome Research, 2018, 17, 1624-1635.	3.7	26

#	Article	IF	CITATIONS
55	Evaluation of filter paper collection of urine samples for detection and measurement of organic acidurias by capillary electrophoresis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 780, 73-82.	2.3	24
56	Mass distribution and focusing properties of carrier ampholytes for isoelectric focusing: I.ÂNovel and unexpected results. Electrophoresis, 2006, 27, 3919-3934.	2.4	24
57	Foodomics study on the effects of extracellular production of hydrogen peroxide by rosemary polyphenols on the antiâ€proliferative activity of rosemary polyphenols against HTâ€29 cells. Electrophoresis, 2016, 37, 1795-1804.	2.4	24
58	Detection and quantitation of a bioactive compound inVicia narbonensis L. seeds by capillary electrophoresis-mass spectrometry: A comparative study with UV detection. Electrophoresis, 2005, 26, 2351-2359.	2.4	22
59	Mass distribution, polydispersity and focusing properties of carrier ampholytes for IEF. IV: pHâ€6–8 intervals. Electrophoresis, 2007, 28, 1488-1494.	2.4	21
60	Mass distribution, polydispersity and focusing properties of carrier ampholytes for IEF II: pHâ€4–6 intervals. Electrophoresis, 2006, 27, 4849-4858.	2.4	20
61	Mass distribution, polydispersity and focusing properties of carrier ampholytes for IEF. III: pHâ€2.5–4 intervals. Electrophoresis, 2007, 28, 715-723.	2.4	18
62	Recent Advances and Applications of Metabolomics to Investigate Neurodegenerative Diseases. International Review of Neurobiology, 2015, 122, 95-132.	2.0	18
63	Capillary electrophoresis-mass spectrometry of citrus endophytic bacteria siderophores. Electrophoresis, 2006, 27, 2567-2574.	2.4	17
64	A Foodomics Approach: CE-MS for Comparative Metabolomics of Colon Cancer Cells Treated with Dietary Polyphenols. Methods in Molecular Biology, 2012, 869, 185-195.	0.9	17
65	The mitochondrial negative regulator MCJ modulates the interplay between microbiota and the host during ulcerative colitis. Scientific Reports, 2020, 10, 572.	3.3	17
66	Plasma metabolome and skin proteins in Charcot-Marie-Tooth 1A patients. PLoS ONE, 2017, 12, e0178376.	2.5	16
67	Capillary Electrophoresis-Mass Spectrometry for Peptide Analysis: Target-Based Approaches and Proteomics/Peptidomics Strategies. Methods in Molecular Biology, 2013, 984, 139-151.	0.9	15
68	Monitoring ibuprofen enantiomers released from polymeric systems. European Journal of Pharmaceutical Sciences, 2002, 16, 75-82.	4.0	14
69	The immunosuppressive effect of the tick protein, Salp15, is long-lasting and persists in a murine model of hematopoietic transplant. Scientific Reports, 2017, 7, 10740.	3.3	14
70	Decreased Cerebrospinal Fluid Levels of L-Carnitine in Non-Apolipoprotein E4 Carriers at Early Stages of Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 41, 223-232.	2.6	13
71	Metabolomics study of early metabolic changes in hepatic HepaRG cells in response to rosemary diterpenes exposure. Analytica Chimica Acta, 2018, 1037, 140-151.	5.4	13
72	New Pseudopeptidic Cross-Linker Containing Urea Bonds:Â Study of Its Degradation Routes in Aqueous Media Using Capillary Electrophoresis-Mass Spectrometry. Biomacromolecules, 2006, 7, 720-727.	5.4	11

#	Article	IF	CITATIONS
73	Mass distribution, polydispersity, and focusing properties of carrier ampholytes for IEF. Part V: pHâ€9–11 interval. Electrophoresis, 2007, 28, 3156-3162.	2.4	11
74	Potential of prodendronic polyamines with modulated segmental charge density as novel coating for fast and efficient analysis of peptides and basic proteins by CE and CEâ€MS. Electrophoresis, 2015, 36, 1564-1571.	2.4	11
75	Capillary Electrophoresis in Food and Foodomics. Methods in Molecular Biology, 2016, 1483, 471-507.	0.9	11
76	Background correction in separation techniques hyphenated to high-resolution mass spectrometry – Thorough correction with mass spectrometry scans recorded as profile spectra. Journal of Chromatography A, 2017, 1492, 98-105.	3.7	11
77	Capillary electrophoresis-mass spectrometry of a new cross-linker with acrylic functionality. Electrophoresis, 2006, 27, 2250-2258.	2.4	9
78	Metabolomics in Alzheimer's disease research. Electrophoresis, 2013, 34, 2799-2811.	2.4	8
79	Finnee $\hat{a} \in$ A Matlab toolbox for separation techniques hyphenated high resolution mass spectrometry dataset. Chemometrics and Intelligent Laboratory Systems, 2016, 155, 138-144.	3.5	8
80	Screening gut microbial trimethylamine production by fast and cost-effective capillary electrophoresis. Analytical and Bioanalytical Chemistry, 2019, 411, 2697-2705.	3.7	8
81	Introducing the concept of centergram. A new tool to squeeze data from separation techniques–mass spectrometry couplings. Journal of Chromatography A, 2014, 1330, 89-96.	3.7	7
82	Mass spectrometry detection in capillary electrophoresis. Comprehensive Analytical Chemistry, 2005, 45, 441-517.	1.3	5
83	Algorithm for comprehensive analysis of datasets from hyphenated high resolution mass spectrometric techniques using single ion profiles and cluster analysis. Journal of Chromatography A, 2016, 1429, 134-141.	3.7	5
84	Foodomics: LC and LC-MS-based omics strategies in food science and nutrition. , 2017, , 267-299.		5
85	Profiling of Genetically Modified Organisms Using Omics Technologies. Comprehensive Analytical Chemistry, 2014, , 349-373.	1.3	4
86	Direct Mass Spectrometry-Based Approaches in Metabolomics. Comprehensive Analytical Chemistry, 2014, , 235-253.	1.3	3
87	A Foodomics Approach: CE-MS for Comparative Metabolomics of Colon Cancer Cells Treated with Dietary Polyphenols. Methods in Molecular Biology, 2019, 1855, 303-313.	0.9	3
88	Resazurin-based high-throughput screening method for the discovery of dietary phytochemicals to target microbial transformation of <scp>l</scp> -carnitine into trimethylamine, a gut metabolite associated with cardiovascular disease. Food and Function, 2022, 13, 5640-5653.	4.6	3
89	Emerging RNA-Seq Applications in Food Science. Comprehensive Analytical Chemistry, 2014, , 107-128.	1.3	2
90	Metabolomics in the Study of Alzheimer's Disease. Comprehensive Analytical Chemistry, 2014, 64, 249-278.	1.3	2

91 Food Metabolomics—An Overview., 2019, , . 1 92 Comparative Proteomics to Investigate the In Vitro Antiproliferative Effect of Dietary Polyphenols 0.5 0 93 CE-MS in Food Analysis and Foodomics., 0, 193-215. 0	TIONS
 Comparative Proteomics to Investigate the In Vitro Antiproliferative Effect of Dietary Polyphenols Against K562 Leukemia Cells. Turkish Journal of Biochemistry, 0, , . CE-MS in Food Analysis and Foodomics 0 193-215. 	
93 CE-MS in Food Analysis and Foodomics 0 193-215.	
94CE-MS Workflows for Metabolomics: A Focus on Sample Preparation. New Developments in Mass Spectrometry, 2018, , 21-52.0.2	
95 Food Transcriptomics—An Overview. , 2019, , . 0	