Torsten Gutmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/581099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica. Zeitschrift Fur Physikalische Chemie, 2022, 236, 939-960.	2.8	4
2	The mechanochemical Friedelâ€Crafts polymerization as a solventâ€free crossâ€linking approach toward microporous polymers. Journal of Polymer Science, 2022, 60, 62-71.	3.8	16
3	SiCN Ceramics as Electrode Materials for Sodium/Sodium Ion Cells – Insights from ²³ Na Inâ€Situ Solidâ€State NMR. Batteries and Supercaps, 2022, 5, .	4.7	9
4	Densities, Viscosities, and Self-Diffusion Coefficients of Several Polyethylene Glycols. Journal of Chemical & Engineering Data, 2022, 67, 88-103.	1.9	9
5	Effects of Spiro-Cyclohexane Substitution of Nitroxyl Biradicals on Dynamic Nuclear Polarization. Molecules, 2022, 27, 3252.	3.8	1
6	Dirhodium complex immobilization on modified cellulose for highly selective heterogeneous cyclopropanation reactions. Cellulose, 2022, 29, 6283-6299.	4.9	2
7	Magnetic Resonance Signal Amplification by Reversible Exchange of Selective PyFALCEA Oligopeptide Ligands Towards Epidermal Growth Factor Receptors. ChemBioChem, 2021, 22, 855-860.	2.6	18
8	Surface reactions of ammonia on ruthenium nanoparticles revealed by ¹⁵ N and ¹³ C solid-state NMR. Catalysis Science and Technology, 2021, 11, 4509-4520.	4.1	3
9	Design and characterization of novel dirhodium coordination polymers – the impact of ligand size on selectivity in asymmetric cyclopropanation. Catalysis Science and Technology, 2021, 11, 3481-3492.	4.1	6
10	Modification of Bacterial Cellulose Membrane with 1,4-Bis(triethoxysilyl)benzene: A Thorough Physical–Chemical Characterization Study. Journal of Physical Chemistry C, 2021, 125, 4498-4508.	3.1	4
11	Direct Observation of Carbonate Formation in Partly Hydrated Tricalcium Silicate by Dynamic Nuclear Polarization Enhanced NMR Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 7321-7328.	3.1	5
12	¹⁹ F MAS DNP for Probing Molecules in Nanomolar Concentrations: Direct Polarization as Key for Solid-State NMR Spectra without Solvent and Matrix Signals. Journal of Physical Chemistry C, 2021, 125, 7287-7296.	3.1	8
13	A Novel Wilkinson's Type Silica Supported Polymer Catalyst: Insights from Solid-State NMR and Hyperpolarization Techniques. Journal of Physical Chemistry C, 2021, 125, 7178-7187.	3.1	9
14	Mechanism of Heterogenization of Dirhodium Catalysts: Insights from DFT Calculations. Inorganic Chemistry, 2021, 60, 6239-6248.	4.0	3
15	Densities, Viscosities, and Self-Diffusion Coefficients of Ethylene Glycol Oligomers. Journal of Chemical & Engineering Data, 2021, 66, 2480-2500.	1.9	14
16	A novel strategy for site selective spin-labeling to investigate bioactive entities by DNP and EPR spectroscopy. Scientific Reports, 2021, 11, 13714.	3.3	4
17	Characterization of Functional Groups in Estuarine Dissolved Organic Matter by DNPâ€enhanced ¹⁵ N and ¹³ C Solid‣tate NMR. ChemPhysChem, 2021, 22, 1907-1913.	2.1	2
18	Trifunctional Silyl Groups as Anchoring Units in the Preparation of Luminescent Phosphole–Silica Hybrids. Inorganic Chemistry, 2021, 60, 14263-14274.	4.0	6

#	Article	IF	CITATIONS
19	Immobilization of a chiral dirhodium catalyst on SBA-15 via click-chemistry: Application in the asymmetric cyclopropanation of 3-diazooxindole with aryl alkenes. Journal of CO2 Utilization, 2021, 52, 101682.	6.8	5
20	Solvent-free dynamic nuclear polarization enhancements in organically modified mesoporous silica. Physical Chemistry Chemical Physics, 2021, 23, 12559-12568.	2.8	8
21	Unexpected selective alkaline periodate oxidation of chitin for the isolation of chitin nanocrystals. Green Chemistry, 2021, 23, 745-751.	9.0	19
22	Deuterium NMR Studies of the Solid–Liquid Phase Transition of Octanol- <i>d</i> ₁₇ Confined in SBA-15. Journal of Physical Chemistry C, 2021, 125, 25155-25164.	3.1	6
23	N-Hydroxysuccinimide-activated esters as a functionalization agent for amino cellulose: synthesis and solid-state NMR characterization. Cellulose, 2020, 27, 1239-1254.	4.9	13
24	A comprehensive approach for the characterization of porous polymers using 13C and 15N dynamic nuclear polarization NMR spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 23307-23314.	2.8	11
25	Dirhodium Coordination Polymers for Asymmetric Cyclopropanation of Diazooxindoles with Olefins: Synthesis and Spectroscopic Analysis. ChemPlusChem, 2020, 85, 1737-1746.	2.8	7
26	Breakdown of the Stokes–Einstein Equation for Solutions of Water in Oil Reverse Micelles. Journal of Physical Chemistry B, 2020, 124, 9115-9125.	2.6	7
27	Solid-State Nuclear Magnetic Resonance as a Versatile Tool To Identify the Main Chemical Components of Epoxy-Based Thermosets. ACS Omega, 2020, 5, 5412-5420.	3.5	2
28	Direct and Indirect Dynamic Nuclear Polarization Transfer Observed in Mesoporous Materials Impregnated with Nonionic Surfactant Solutions of Polar Polarizing Agents. Journal of Physical Chemistry C, 2020, 124, 5145-5156.	3.1	9
29	Trityl-Aryl-Nitroxide-Based Genuinely <i>g</i> -Engineered Biradicals, As Studied by Dynamic Nuclear Polarization, Multifrequency ESR/ENDOR, Arbitrary Wave Generator Pulse Microwave Waveform Spectroscopy, and Quantum Chemical Calculations. Journal of Physical Chemistry A, 2019, 123, 7507-7517.	2.5	15
30	Insights into the role of zirconium in proline functionalized metal-organic frameworks attaining high enantio- and diastereoselectivity. Journal of Catalysis, 2019, 377, 41-50.	6.2	33
31	Efficient Referencing of FSLG CPMAS HETCOR Spectra Using 2D 1H–1H MAS FSLG. Applied Magnetic Resonance, 2019, 50, 1399-1407.	1.2	8
32	Insights into the reaction mechanism and particle size effects of CO oxidation over supported Pt nanoparticle catalysts. Journal of Catalysis, 2019, 377, 662-672.	6.2	29
33	Solid-state NMR of nanocrystals. Annual Reports on NMR Spectroscopy, 2019, 97, 1-82.	1.5	22
34	Room temperature CO oxidation catalysed by supported Pt nanoparticles revealed by solid-state NMR and DNP spectroscopy. Catalysis Science and Technology, 2019, 9, 3743-3752.	4.1	12
35	Efficient Building Blocks for Solidâ€Phase Peptide Synthesis of Spin Labeled Peptides for Electron Paramagnetic Resonance and Dynamic Nuclear Polarization Applications. ChemPhysChem, 2019, 20, 1475-1487.	2.1	9
36	Substituent Influences on the NMR Signal Amplification of Ir Complexes with Heterocyclic Carbene Ligands. Applied Magnetic Resonance, 2019, 50, 895-902.	1.2	7

#	Article	IF	CITATIONS
37	Structural Insights into Peptides Bound to the Surface of Silica Nanopores. Chemistry - A European Journal, 2019, 25, 5214-5221.	3.3	15
38	Structural characterization of vanadium environments in MCM-41 molecular sieve catalysts by solid state ⁵¹ V NMR. Catalysis Science and Technology, 2019, 9, 6180-6190.	4.1	13
39	Selective DNP Signal Amplification To Probe Structures of Core–Shell Polymer Hybrid Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 644-652.	3.1	7
40	Reactions of D 2 with 1,4â€Bis(diphenylphosphino) butaneâ€Stabilized Metal Nanoparticlesâ€A Combined Gasâ€phase NMR, GCâ€MS and Solidâ€state NMR Study. ChemCatChem, 2019, 11, 1465-1471.	3.7	11
41	Combining Freezing Point Depression and Self-Diffusion Data for Characterizing Aggregation. Journal of Physical Chemistry B, 2018, 122, 4913-4921.	2.6	6
42	Chemically Modified Silica Materials as Model Systems for the Characterization of Water-Surface Interactions. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1127-1146.	2.8	16
43	Gas phase ¹ H NMR studies and kinetic modeling of dihydrogen isotope equilibration catalyzed by Ru-nanoparticles under normal conditions: dissociative <i>vs.</i> associative exchange. Physical Chemistry Chemical Physics, 2018, 20, 10697-10712.	2.8	16
44	Novel Biradicals for Direct Excitation Highfield Dynamic Nuclear Polarization. Journal of Physical Chemistry C, 2018, 122, 11422-11432.	3.1	36
45	Quasi-Equilibria and Polarization Transfer Between Adjacent and Remote Spins: ¹ H– ¹³ C CP MAS Kinetics in Glycine. Journal of Physical Chemistry A, 2018, 122, 8938-8947.	2.5	11
46	Preceramic core-shell particles for the preparation of hybrid colloidal crystal films by melt-shear organization and conversion into porous ceramics. Materials and Design, 2018, 160, 926-935.	7.0	12
47	Novel dirhodium coordination polymers: the impact of side chains on cyclopropanation. Catalysis Science and Technology, 2018, 8, 5190-5200.	4.1	15
48	Biofunctionalization of Nano Channels by Direct Inâ€Pore Solidâ€Phase Peptide Synthesis. Chemistry - A European Journal, 2018, 24, 17814-17822.	3.3	18
49	Solid-State NMR Studies of Supported Transition Metal Catalysts and Nanoparticles. , 2018, , 683-703.		Ο
50	Mixtures of Alcohols and Water confined in Mesoporous Silica: A Combined Solid-State NMR and Molecular Dynamics Simulation Study. Journal of Physical Chemistry C, 2018, 122, 19540-19550.	3.1	20
51	Surprising Differences of Alkane Câ€H Activation Catalyzed by Ruthenium Nanoparticles: Complex Surfaceâ€Substrate Recognition?. ChemCatChem, 2018, 10, 4243-4247.	3.7	15
52	Efficient, Selfâ€Terminating Isolation of Cellulose Nanocrystals through Periodate Oxidation in Pickering Emulsions. ChemSusChem, 2018, 11, 3581-3585.	6.8	20
53	Getting Insights into the Influence of Crystal Plane Effect of Shaped Ceria on Its Catalytic Performances. Journal of Physical Chemistry C, 2018, 122, 20402-20409.	3.1	35
54	Surface Enhanced DNP Assisted Solid-State NMR of Functionalized SiO ₂ Coated Polycarbonate Membranes. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1173-1186.	2.8	8

#	Article	IF	CITATIONS
55	Directly vs Indirectly Enhanced ¹³ C in Dynamic Nuclear Polarization Magic Angle Spinning NMR Experiments of Nonionic Surfactant Systems. Journal of Physical Chemistry C, 2017, 121, 2418-2427.	3.1	37
56	Dynamic Nuclear Polarization Signal Amplification as a Sensitive Probe for Specific Functionalization of Complex Paper Substrates. Journal of Physical Chemistry C, 2017, 121, 3896-3903.	3.1	27
57	Direct Observation of Coordinatively Unsaturated Sites on the Surface of a Fluoride-Doped Alumina Catalyst. Journal of Physical Chemistry C, 2017, 121, 12206-12213.	3.1	19
58	Fluid Flow Programming in Paper-Derived Silica–Polymer Hybrids. Langmuir, 2017, 33, 332-339.	3.5	12
59	Unusual Local Molecular Motions in the Solid State Detected by Dynamic Nuclear Polarization Enhanced NMR Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 22948-22957.	3.1	27
60	Thermoreversible Selfâ€Assembly of Perfluorinated Core oronas Celluloseâ€Nanoparticles in Dry State. Advanced Materials, 2017, 29, 1702473.	21.0	19
61	Characterization of V–Mo–W Mixed Oxide Catalyst Surface Species by ⁵¹ V Solid-State Dynamic Nuclear Polarization NMR. Journal of Physical Chemistry C, 2017, 121, 20857-20864.	3.1	12
62	Revealing Structure Reactivity Relationships in Heterogenized Dirhodium Catalysts by Solid-State NMR Techniques. Journal of Physical Chemistry C, 2017, 121, 17409-17416.	3.1	20
63	Correction to "Directly vs Indirectly Enhanced 13C in Dynamic Nuclear Polarization Magic Angle Spinning NMR Experiments of Nonionic Surfactant Systems― Journal of Physical Chemistry C, 2017, 121, 23847-23847.	3.1	0
64	Comparative Study of the Magnetic Field Dependent Signal Enhancement in Solid-State Dynamic Nuclear Polarization Experiments. Journal of Physical Chemistry C, 2017, 121, 27089-27097.	3.1	8
65	³¹ P-Solid-State NMR Characterization and Catalytic Hydrogenation Tests of Novel heterogenized Iridium-Catalysts. Zeitschrift Fur Physikalische Chemie, 2017, 231, 653-669.	2.8	9
66	Free-Standing and Self-Crosslinkable Hybrid Films by Core–Shell Particle Design and Processing. Nanomaterials, 2017, 7, 390.	4.1	8
67	Solid-state NMR Studies of Supported Transition Metal Catalysts and Nanoparticles. , 2017, , 1-21.		1
68	Heterogeneous self-supported dirhodium(<scp>ii</scp>) catalysts with high catalytic efficiency in cyclopropanation – a structural study. Catalysis Science and Technology, 2016, 6, 7830-7840.	4.1	21
69	Imidazole-Doped Cellulose as Membrane for Fuel Cells: Structural and Dynamic Insights from Solid-State NMR. Journal of Physical Chemistry C, 2016, 120, 19574-19585.	3.1	33
70	Synthesis and Solid‧tate NMR Characterization of a Robust, Pyridylâ€Based Immobilized Wilkinson's Type Catalyst with High Catalytic Performance. ChemCatChem, 2016, 8, 3409-3416.	3.7	16
71	Selective C–H Activation at a Molecular Rhodium Sigma-Alkane Complex by Solid/Gas Single-Crystal to Single-Crystal H/D Exchange. Journal of the American Chemical Society, 2016, 138, 13369-13378. 	13.7	42
72	Design of a Heterogeneous Catalyst Based on Cellulose Nanocrystals for Cyclopropanation: Synthesis and Solidâ€5tate NMR Characterization. Chemistry - A European Journal, 2015, 21, 12414-12420.	3.3	49

#	Article	IF	CITATIONS
73	NMR Signal Enhancement by Effective SABRE Labeling of Oligopeptides. Chemistry - A European Journal, 2015, 21, 12616-12619.	3.3	35
74	A Mousetrap for Carbenium Ions: NMR Detectives at Work. Angewandte Chemie - International Edition, 2015, 54, 9450-9451.	13.8	10
75	Air-Stable Gold Nanoparticles Ligated by Secondary Phosphine Oxides as Catalyst for the Chemoselective Hydrogenation of Substituted Aldehydes: a Remarkable Ligand Effect. Journal of the American Chemical Society, 2015, 137, 7718-7727.	13.7	99
76	Mixtures of Isobutyric Acid and Water Confined in Cylindrical Silica Nanopores Revisited: A Combined Solid-State NMR and Molecular Dynamics Simulation Study. Journal of Physical Chemistry C, 2015, 119, 28961-28969.	3.1	20
77	Natural Abundance ¹⁵ Nâ€NMR by Dynamic Nuclear Polarization: Fast Analysis of Binding Sites of a Novel Amine arboxyl‣inked Immobilized Dirhodium Catalyst. Chemistry - A European Journal, 2015, 21, 3798-3805.	3.3	59
78	Synthesis and solid state NMR characterization of novel peptide/silica hybrid materials. Solid State Nuclear Magnetic Resonance, 2015, 72, 73-78.	2.3	26
79	Dipolar induced Para-Hydrogen-Induced Polarization. Solid State Nuclear Magnetic Resonance, 2014, 63-64, 20-29.	2.3	5
80	Regioselective and Stereospecific Deuteration of Bioactive Aza Compounds by the Use of Ruthenium Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 230-234.	13.8	122
81	Parahydrogenâ€induced polarization of carboxylic acids: a pilot study of valproic acid and related structures. NMR in Biomedicine, 2014, 27, 810-816.	2.8	4
82	Water and small organic molecules as probes for geometric confinement in well-ordered mesoporous carbon materials. Physical Chemistry Chemical Physics, 2014, 16, 9327-9336.	2.8	36
83	Synthesis, Solid tate NMR Characterization, and Application for Hydrogenation Reactions of a Novel Wilkinson'sâ€Type Immobilized Catalyst. Chemistry - A European Journal, 2014, 20, 1159-1166.	3.3	45
84	Tin-decorated ruthenium nanoparticles: a way to tune selectivity in hydrogenation reaction. Nanoscale, 2014, 6, 9806-9816.	5.6	24
85	Multi-responsive cellulose nanocrystal–rhodamine conjugates: an advanced structure study by solid-state dynamic nuclear polarization (DNP) NMR. Physical Chemistry Chemical Physics, 2014, 16, 26322-26329.	2.8	63
86	Effective PHIP Labeling of Bioactive Peptides Boosts the Intensity of the NMR Signal. Angewandte Chemie - International Edition, 2014, 53, 12941-12945.	13.8	34
87	Recent Advances in Solid State NMR of Small Molecules in Confinement. Israel Journal of Chemistry, 2014, 54, 60-73.	2.3	27
88	Effektive Markierung von bioaktiven Peptiden mit PHIPâ€Markern zur Steigerung der Empfindlichkeit von NMRâ€ 5 ignalen. Angewandte Chemie, 2014, 126, 13155-13159.	2.0	13
89	From Molecular Complexes to Complex Metallic Nanostructures— ² H Solid‣tate NMR Studies of Rutheniumâ€Containing Hydrogenation Catalysts. ChemPhysChem, 2013, 14, 3026-3033.	2.1	37
90	Solid-state NMR concepts for the investigation of supported transition metal catalysts and nanoparticles. Solid State Nuclear Magnetic Resonance, 2013, 55-56, 1-11.	2.3	45

#	Article	IF	CITATIONS
91	PHIP-label: parahydrogen-induced polarization in propargylglycine-containing synthetic oligopeptides. Chemical Communications, 2013, 49, 7839.	4.1	29
92	Immobilization and Characterization of RuCl2(PPh3)3Mesoporous Silica SBA-3. Zeitschrift Fur Physikalische Chemie, 2013, 227, 901-915.	2.8	7
93	Investigation of the surface chemistry of phosphine-stabilized ruthenium nanoparticles – an advanced solid-state NMR study. Physical Chemistry Chemical Physics, 2013, 15, 17383.	2.8	29
94	Secondary phosphineoxides as pre-ligands for nanoparticle stabilization. Catalysis Science and Technology, 2013, 3, 595-599.	4.1	60
95	Parahydrogen induced polarization in face of keto–enol tautomerism: proof of concept with hyperpolarized ethanol. Physical Chemistry Chemical Physics, 2012, 14, 5601.	2.8	34
96	Time domain para hydrogen induced polarization. Solid State Nuclear Magnetic Resonance, 2012, 43-44, 14-21.	2.3	24
97	2H NMR calculations on polynuclear transition metal complexes: on the influence of local symmetry and other factors. Physical Chemistry Chemical Physics, 2011, 13, 20199.	2.8	15
98	New investigations of technical rhodium and iridium catalysts in homogeneous phase employing para-hydrogen induced polarization. Solid State Nuclear Magnetic Resonance, 2011, 40, 88-90.	2.3	7
99	Revealing the Position of the Substrate in Nickel Superoxide Dismutase: A Model Study. Angewandte Chemie - International Edition, 2011, 50, 2946-2950.	13.8	22
100	Efficient design of multituned transmission line NMR probes: The electrical engineering approach. Solid State Nuclear Magnetic Resonance, 2011, 39, 72-80.	2.3	5
101	Understanding the leaching properties of heterogenized catalysts: A combined solid-state and PHIP NMR study. Solid State Nuclear Magnetic Resonance, 2010, 38, 90-96.	2.3	36
102	Hydrido-Ruthenium Cluster Complexes as Models for Reactive Surface Hydrogen Species of Ruthenium Nanoparticles. Solid-State ² H NMR and Quantum Chemical Calculations. Journal of the American Chemical Society, 2010, 132, 11759-11767.	13.7	44
103	Efficient analysis of 51V solid-state MAS NMR spectra using genetic algorithms. Solid State Nuclear Magnetic Resonance, 2009, 35, 37-48.	2.3	14
104	Correlations between 51V solid-state NMR parameters and chemical structure of vanadium (V) complexes as models for related metalloproteins and catalysts. Solid State Nuclear Magnetic Resonance, 2009, 36, 192-201.	2.3	23
105	Para-hydrogen induced polarization in homogeneous phase—an example of how ionic liquids affect homogenization and thus activation of catalysts. Physical Chemistry Chemical Physics, 2009, 11, 9170.	2.8	27
106	DFT 2H quadrupolar coupling constants of ruthenium complexes: a good probe of the coordination of hydrides in conjuction with experiments. Physical Chemistry Chemical Physics, 2009, 11, 5657.	2.8	24
107	51V solid-state NMR investigations and DFT studies of model compounds for vanadium haloperoxidases. Solid State Nuclear Magnetic Resonance, 2008, 34, 52-67.	2.3	29
108	DFT Calculations of ⁵¹ V Solid-State NMR Parameters of Vanadium(V) Model Complexes. Zeitschrift Fur Physikalische Chemie, 2008, 222, 1389-1406.	2.8	18

#	Article	IF	CITATIONS
109	² H Solid-State NMR of Ruthenium Complexes. Journal of the American Chemical Society, 2008, 130, 17502-17508.	13.7	33
110	Mechanisms of Dipolar Ortho/Para-H ₂ O Conversion in Ice. Zeitschrift Fur Physikalische Chemie, 2008, 222, 1049-1063.	2.8	40
111	Light Amplification Materials Based on Biopolymers Doped with Dye Molecules—Structural Insights from 15N and 13C Solid-State Dynamic Nuclear Polarization. Journal of Physical Chemistry C, 0, , .	3.1	3