
Christian Obinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5809534/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolution of Catalases from Bacteria to Humans. Antioxidants and Redox Signaling, 2008, 10, 1527-1548.	5.4	358
2	Myeloperoxidase: a target for new drug development?. British Journal of Pharmacology, 2007, 152, 838-854.	5.4	336
3	Active site structure and catalytic mechanisms of human peroxidases. Archives of Biochemistry and Biophysics, 2006, 445, 199-213.	3.0	296
4	Reaction of Myeloperoxidase Compound I with Chloride, Bromide, Iodide, and Thiocyanate. Biochemistry, 1998, 37, 17923-17930.	2.5	270
5	Mechanism of Reaction of Myeloperoxidase with Nitrite. Journal of Biological Chemistry, 2000, 275, 20597-20601.	3.4	210
6	Independent evolution of four heme peroxidase superfamilies. Archives of Biochemistry and Biophysics, 2015, 574, 108-119.	3.0	184
7	Mechanisms of catalase activity of heme peroxidases. Archives of Biochemistry and Biophysics, 2010, 500, 74-81.	3.0	153
8	Molecular evolution of hydrogen peroxide degrading enzymes. Archives of Biochemistry and Biophysics, 2012, 525, 131-144.	3.0	143
9	The peroxidase–cyclooxygenase superfamily: Reconstructed evolution of critical enzymes of the innate immune system. Proteins: Structure, Function and Bioinformatics, 2008, 72, 589-605.	2.6	140
10	Reaction of Lactoperoxidase Compound I with Halides and Thiocyanateâ€. Biochemistry, 2002, 41, 11895-11900.	2.5	124
11	Occurrence, phylogeny, structure, and function of catalases and peroxidases in cyanobacteria. Journal of Experimental Botany, 2009, 60, 423-440.	4.8	116
12	Spectral and Kinetic Studies on the Formation of Eosinophil Peroxidase Compound I and Its Reaction with Halides and Thiocyanateâ€. Biochemistry, 2000, 39, 15578-15584.	2.5	111
13	Protein-Based Radicals in the Catalase-Peroxidase ofSynechocystisPCC6803:Â A Multifrequency EPR Investigation of Wild-Type and Variants on the Environment of the Heme Active Site. Journal of the American Chemical Society, 2003, 125, 14093-14102.	13.7	108
14	Redox properties of the couples compound I/compound II and compound II/native enzyme of human myeloperoxidase. Biochemical and Biophysical Research Communications, 2003, 301, 551-557.	2.1	104
15	Mechanism of reaction of myeloperoxidase with hydrogen peroxide and chloride ion. FEBS Journal, 2000, 267, 5858-5864.	0.2	101
16	Kinetics and Thermodynamics of Halide and Nitrite Oxidation by Mammalian Heme Peroxidases. European Journal of Inorganic Chemistry, 2006, 2006, 3801-3811.	2.0	96
17	Interactions of hydrogen sulfide with myeloperoxidase. British Journal of Pharmacology, 2015, 172, 1516-1532.	5.4	96
18	Heme to protein linkages in mammalian peroxidases: impact on spectroscopic, redox and catalytic properties. Natural Product Reports, 2007, 24, 571-584.	10.3	95

#	Article	IF	CITATIONS
19	Probing the structure and bifunctionality of catalase-peroxidase (KatG). Journal of Inorganic Biochemistry, 2006, 100, 568-585.	3.5	92
20	Redox properties of the couple compound I/native enzyme of myeloperoxidase and eosinophil peroxidase. FEBS Journal, 2001, 268, 5142-5148.	0.2	90
21	Phylogenetic distribution of catalase-peroxidases: Are there patches of order in chaos?. Gene, 2007, 397, 101-113.	2.2	86
22	Redox Intermediates of Plant and Mammalian Peroxidases: A Comparative Transient-Kinetic Study of Their Reactivity Toward Indole Derivatives. Archives of Biochemistry and Biophysics, 2002, 398, 12-22.	3.0	84
23	The molecular peculiarities of catalase-peroxidases. FEBS Letters, 2001, 492, 177-182.	2.8	81
24	Structural and functional characterisation of the chlorite dismutase from the nitrite-oxidizing bacterium "Candidatus Nitrospira defluviiâ€ŧ Identification of a catalytically important amino acid residue. Journal of Structural Biology, 2010, 172, 331-342.	2.8	79
25	Mechanism of interaction of betanin and indicaxanthin with human myeloperoxidase and hypochlorous acid. Biochemical and Biophysical Research Communications, 2005, 332, 837-844.	2.1	78
26	Unexpected Diversity of Chlorite Dismutases: a Catalytically Efficient Dimeric Enzyme from Nitrobacter winogradskyi. Journal of Bacteriology, 2011, 193, 2408-2417.	2.2	76
27	Directed evolution of proteins for increased stability and expression using yeast display. Archives of Biochemistry and Biophysics, 2012, 526, 174-180.	3.0	76
28	Kinetics of oxidation of aliphatic and aromatic thiols by myeloperoxidase compounds I and II. FEBS Letters, 1999, 443, 290-296.	2.8	75
29	Redox properties of myeloperoxidase. Redox Report, 2003, 8, 179-186.	4.5	75
30	Effect of Distal Cavity Mutations on the Formation of Compound I in Catalase-Peroxidases. Journal of Biological Chemistry, 2000, 275, 22854-22861.	3.4	74
31	Total Conversion of Bifunctional Catalase-Peroxidase (KatG) to Monofunctional Peroxidase by Exchange of a Conserved Distal Side Tyrosine. Journal of Biological Chemistry, 2003, 278, 20185-20191.	3.4	73
32	SEC-ICP-DRCMS and SEC-ICP-SFMS for determination of metal–sulfur ratios in metalloproteins. Journal of Analytical Atomic Spectrometry, 2004, 19, 74-79.	3.0	71
33	Evolution of structure and function of Class I peroxidases. Archives of Biochemistry and Biophysics, 2010, 500, 45-57.	3.0	71
34	The respiratory chain of blue-green algae (cyanobacteria). Physiologia Plantarum, 2004, 120, 358-369.	5.2	70
35	Exploitation of the unusual thermodynamic properties of human myeloperoxidase in inhibitor design. Biochemical Pharmacology, 2005, 69, 1149-1157.	4.4	70
36	Turning points in the evolution of peroxidase–catalase superfamily: molecular phylogeny of hybrid heme peroxidases. Cellular and Molecular Life Sciences, 2014, 71, 4681-4696.	5.4	70

#	Article	IF	CITATIONS
37	Activity, Peroxide Compound Formation, and Heme d Synthesis inEscherichia coliHPII Catalase. Archives of Biochemistry and Biophysics, 1997, 342, 58-67.	3.0	68
38	Essential Role of Proximal Histidine-Asparagine Interaction in Mammalian Peroxidases. Journal of Biological Chemistry, 2009, 284, 25929-25937.	3.4	68
39	Purification and Characterization of a Homodimeric Catalase-Peroxidase from the CyanobacteriumAnacystis nidulans. Biochemical and Biophysical Research Communications, 1997, 235, 545-552.	2.1	62
40	Heterolytic Reduction of Fatty Acid Hydroperoxides by Cytochrome <i>c</i> /Cardiolipin Complexes: Antioxidant Function in Mitochondria. Journal of the American Chemical Society, 2009, 131, 11288-11289.	13.7	62
41	The bioenergetic role of dioxygen and the terminal oxidase(s) in cyanobacteria. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1707, 231-253.	1.0	61
42	Transient and Steady-state Kinetics of the Oxidation of Substituted Benzoic Acid Hydrazides by Myeloperoxidase. Journal of Biological Chemistry, 1999, 274, 9494-9502.	3.4	60
43	Two-electron reduction and one-electron oxidation of organic hydroperoxides by human myeloperoxidase. FEBS Letters, 2000, 484, 139-143.	2.8	59
44	Mechanism of Reaction of Melatonin with Human Myeloperoxidase. Biochemical and Biophysical Research Communications, 2001, 282, 380-386.	2.1	59
45	A conformation-specific ON-switch for controlling CAR T cells with an orally available drug. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14926-14935.	7.1	59
46	Influence of the Unusual Covalent Adduct on the Kinetics and Formation of Radical Intermediates in Synechocystis Catalase Peroxidase. Journal of Biological Chemistry, 2004, 279, 46082-46095.	3.4	57
47	Transient-state and steady-state kinetics of the oxidation of aliphatic and aromatic thiols by horseradish peroxidase. FEBS Letters, 1997, 411, 269-274.	2.8	56
48	Distal Site Aspartate Is Essential in the Catalase Activity of Catalase-Peroxidasesâ€. Biochemistry, 2003, 42, 5292-5300.	2.5	56
49	Redox Thermodynamics of the Fe(III)/Fe(II) Couple of Human Myeloperoxidase in Its High-Spin and Low-Spin Formsâ€. Biochemistry, 2006, 45, 12750-12755.	2.5	56
50	Inactivation of human myeloperoxidase by hydrogen peroxide. Archives of Biochemistry and Biophysics, 2013, 539, 51-62.	3.0	56
51	Impact of myeloperoxidase-LDL interactions on enzyme activity and subsequent posttranslational oxidative modifications of apoB-100. Journal of Lipid Research, 2014, 55, 747-757.	4.2	55
52	Chlorite dismutases – a heme enzyme family for use in bioremediation and generation of molecular oxygen. Biotechnology Journal, 2014, 9, 461-473.	3.5	55
53	Standard reduction potentials of all couples of the peroxidase cycle of lactoperoxidase. Journal of Inorganic Biochemistry, 2005, 99, 1220-1229.	3.5	53
54	Engineering AvidCARs for combinatorial antigen recognition and reversible control of CAR function. Nature Communications, 2020, 11, 4166.	12.8	53

#	Article	IF	CITATIONS
55	Glycosylation Pattern of Mature Dimeric Leukocyte and Recombinant Monomeric Myeloperoxidase. Journal of Biological Chemistry, 2010, 285, 16351-16359.	3.4	52
56	Molecular Evolution, Structure, and Function of Peroxidasins. Chemistry and Biodiversity, 2012, 9, 1776-1793.	2.1	51
57	Catalase-Peroxidase from Synechocystis Is Capable of Chlorination and Bromination Reactions. Biochemical and Biophysical Research Communications, 2001, 287, 682-687.	2.1	50
58	Redox Intermediates in the Catalase Cycle of Catalase-Peroxidases fromSynechocystisPCC 6803, Burkholderia pseudomallei, andMycobacterium tuberculosisâ€. Biochemistry, 2007, 46, 1183-1193.	2.5	50
59	Directed evolution of stabilized IgG1-Fc scaffolds by application of strong heat shock to libraries displayed on yeast. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 542-549.	2.3	50
60	Correlation between immuno-gold labels and activities of the cytochrome-c oxidase (aa3-type) in membranes of salt stressed cyanobactria. FEMS Microbiology Letters, 1994, 124, 431-437.	1.8	49
61	Structure-Based Design, Synthesis, and Pharmacological Evaluation of 3-(Aminoalkyl)-5-fluoroindoles as Myeloperoxidase Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 8747-8759.	6.4	49
62	Construction of a Stability Landscape of the CH3 Domain of Human IgG1 by Combining Directed Evolution with High Throughput Sequencing. Journal of Molecular Biology, 2012, 423, 397-412.	4.2	48
63	Spectral and Kinetic Studies of the Oxidation of Monosubstituted Phenols and Anilines by RecombinantSynechocystisCatalaseâ~'Peroxidase Compound lâ€. Biochemistry, 1999, 38, 10480-10488.	2.5	47
64	Occurrence and biochemistry of hydroperoxidases in oxygenic phototrophic prokaryotes (cyanobacteria). Plant Physiology and Biochemistry, 2002, 40, 479-490.	5.8	46
65	Hypochlorite-modified high-density lipoprotein acts as a sink for myeloperoxidase in vitro. Cardiovascular Research, 2008, 79, 187-194.	3.8	46
66	Transiently Produced Hypochlorite Is Responsible for the Irreversible Inhibition of Chlorite Dismutase. Biochemistry, 2014, 53, 3145-3157.	2.5	46
67	Catalase-Peroxidase from the Cyanobacterium Synechocystis PCC 6803: Cloning, Overexpression in Escherichia coli, and Kinetic Characterization. Biological Chemistry, 1999, 380, 1087-96.	2.5	44
68	Structure and heme-binding properties of HemQ (chlorite dismutase-like protein) from Listeria monocytogenes. Archives of Biochemistry and Biophysics, 2015, 574, 36-48.	3.0	44
69	Distal side tryptophan, tyrosine and methionine in catalase-peroxidases are covalently linked in solution. FEBS Letters, 2003, 552, 135-140.	2.8	43
70	The Iron Superoxide Dismutase from the Filamentous Cyanobacterium Nostoc PCC 7120. Journal of Biological Chemistry, 2004, 279, 44384-44393.	3.4	43
71	Hydrogen peroxide oxidation by catalase-peroxidase follows a non-scrambling mechanism. FEBS Letters, 2007, 581, 320-324.	2.8	42
72	Genome sequence of the filamentous soil fungus Chaetomium cochliodes reveals abundance of genes for heme enzymes from all peroxidase and catalase superfamilies. BMC Genomics, 2016, 17, 763.	2.8	41

#	Article	IF	CITATIONS
73	Exploring Site-Specific N-Glycosylation of HEK293 and Plant-Produced Human IgA Isotypes. Journal of Proteome Research, 2017, 16, 2560-2570.	3.7	41
74	Roles of distal aspartate and arginine of B-class dye-decolorizing peroxidase in heterolytic hydrogen peroxide cleavage. Journal of Biological Chemistry, 2018, 293, 14823-14838.	3.4	41
75	Biochemical Characterization of a Membrane-bound Manganese-containing Superoxide Dismutase from the CyanobacteriumAnabaena PCC 7120. Journal of Biological Chemistry, 2002, 277, 43615-43622.	3.4	39
76	The 2.0Ã Resolution Structure of the Catalytic Portion of a Cyanobacterial Membrane-bound Manganese Superoxide Dismutase. Journal of Molecular Biology, 2002, 321, 479-489.	4.2	39
77	Two distinct groups of fungal catalase/peroxidases. Biochemical Society Transactions, 2009, 37, 772-777.	3.4	38
78	Influence of the Covalent Heme–Protein Bonds on the Redox Thermodynamics of Human Myeloperoxidase. Biochemistry, 2011, 50, 7987-7994.	2.5	38
79	Structure of human promyeloperoxidase (proMPO) and the role of the propeptide in processing and maturation. Journal of Biological Chemistry, 2017, 292, 8244-8261.	3.4	38
80	Mechanisms of myeloperoxidase catalyzed oxidation of H2S by H2O2 or O2 to produce potent protein Cys-polysulfide-inducing species. Free Radical Biology and Medicine, 2017, 113, 551-563.	2.9	37
81	Cytochrome oxidase in Anacystis nidulans: stoichiometries and possible functions in the cytoplasmic and thylakoid membranes. Biochimica Et Biophysica Acta - Bioenergetics, 1992, 1098, 184-190.	1.0	36
82	New Insights into the Heme Cavity Structure of Catalase-Peroxidase:Â A Spectroscopic Approach to the RecombinantSynechocystisEnzyme and Selected Distal Cavity Mutantsâ€. Biochemistry, 2002, 41, 9237-9247.	2.5	36
83	Studying metal integration in native and recombinant copper proteins by hyphenated ICP-DRC-MS and ESI-TOF-MS capabilities and limitations of the complementary techniques. Journal of Analytical Atomic Spectrometry, 2006, 21, 1224-1231.	3.0	36
84	Hydrogen peroxideâ€mediated conversion of coproheme to heme <i>b</i> by HemQ—lessons from the first crystal structure and kinetic studies. FEBS Journal, 2016, 283, 4386-4401.	4.7	36
85	Pre-steady-state Kinetics Reveal the Substrate Specificity and Mechanism of Halide Oxidation of Truncated Human Peroxidasin 1. Journal of Biological Chemistry, 2017, 292, 4583-4592.	3.4	36
86	Myeloperoxidase-catalyzed oxidation of cyanide to cyanate: A potential carbamylation route involved in the formation of atherosclerotic plaques?. Journal of Biological Chemistry, 2018, 293, 6374-6386.	3.4	36
87	Direct conversion of ferrous myeloperoxidase to compound II by hydrogen peroxide: an anaerobic stopped-flow study. Biochemical and Biophysical Research Communications, 2003, 312, 292-298.	2.1	35
88	Kinetics of Interconversion of Ferrous Enzymes, Compound II and Compound III, of Wild-type Synechocystis Catalase-peroxidase and Y249F. Journal of Biological Chemistry, 2005, 280, 9037-9042.	3.4	35
89	Peroxynitrite efficiently mediates the interconversion of redox intermediates of myeloperoxidase. Biochemical and Biophysical Research Communications, 2005, 337, 944-954.	2.1	35
90	Reaction of ferrous lactoperoxidase with hydrogen peroxide and dioxygen: an anaerobic stopped-flow study. Archives of Biochemistry and Biophysics, 2005, 434, 51-59.	3.0	35

#	Article	IF	CITATIONS
91	Flavonoids as promoters of the (pseudo-)halogenating activity of lactoperoxidase and myeloperoxidase. Free Radical Biology and Medicine, 2016, 97, 307-319.	2.9	35
92	Engineered IgG1â€Fc – one fragment to bind them all. Immunological Reviews, 2016, 270, 113-131.	6.0	35
93	Molecular Phylogeny of Heme Peroxidases. , 2010, , 7-35.		35
94	Scavenging of superoxide and hydrogen peroxide in blue-green algae (cyanobacteria). Physiologia Plantarum, 1998, 104, 693-698.	5.2	34
95	Role of the Main Access Channel of Catalase-Peroxidase in Catalysis. Journal of Biological Chemistry, 2005, 280, 42411-42422.	3.4	34
96	Role of the Covalent Glutamic Acid 242â^'Heme Linkage in the Formation and Reactivity of Redox Intermediates of Human Myeloperoxidaseâ€. Biochemistry, 2005, 44, 6482-6491.	2.5	34
97	Redox thermodynamics of lactoperoxidase and eosinophil peroxidase. Archives of Biochemistry and Biophysics, 2010, 494, 72-77.	3.0	34
98	Directed evolution of Her2/neu-binding IgG1-Fc for improved stability and resistance to aggregation by using yeast surface display. Protein Engineering, Design and Selection, 2013, 26, 255-265.	2.1	34
99	Discovery of Novel Potent Reversible and Irreversible Myeloperoxidase Inhibitors Using Virtual Screening Procedure. Journal of Medicinal Chemistry, 2017, 60, 6563-6586.	6.4	34
100	Conformational changes of Mal d 2, a thaumatin-like apple allergen, induced by food processing. Food Chemistry, 2009, 112, 803-811.	8.2	33
101	Design, Synthesis, and Structure–Activity Relationship Studies of Novel 3-Alkylindole Derivatives as Selective and Highly Potent Myeloperoxidase Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 3943-3958.	6.4	33
102	X-ray–induced photoreduction of heme metal centers rapidly induces active-site perturbations in a protein-independent manner. Journal of Biological Chemistry, 2020, 295, 13488-13501.	3.4	33
103	A transient kinetic study on the reactivity of recombinant unprocessed monomeric myeloperoxidase. FEBS Letters, 2001, 503, 147-150.	2.8	32
104	Identification of Trp106 as the tryptophanyl radical intermediate in Synechocystis PCC6803 catalase-peroxidase by multifrequency Electron Paramagnetic Resonance spectroscopy. Journal of Inorganic Biochemistry, 2006, 100, 1091-1099.	3.5	32
105	Manipulating Conserved Heme Cavity Residues of Chlorite Dismutase: Effect on Structure, Redox Chemistry, and Reactivity. Biochemistry, 2014, 53, 77-89.	2.5	32
106	Identification of a periplasmic c-type cytochrome as electron donor to the plasma membrane-bound cytochrome oxidase of the cyanobacterium Nostoc Mac. Biochemical and Biophysical Research Communications, 1990, 169, 492-501.	2.1	31
107	Purification and characterization of a hydroperoxidase from the cyanobacteriumSynechocystisPCC 6803: identification of its gene by peptide mass mapping using matrix assisted laser desorption ionization time-of-flight mass spectrometry. FEMS Microbiology Letters, 1999, 170, 1-12.	1.8	31
108	Comparison between Catalase-Peroxidase and Cytochrome c Peroxidase. The Role of the Hydrogen-Bond Networks for Protein Stability and Catalysis. Biochemistry, 2004, 43, 5792-5802.	2.5	31

#	Article	IF	CITATIONS
109	Resonance Raman assignment of myeloperoxidase and the selected mutants Asp94Val and Met243Thr. Effect of the heme distortion. Journal of Raman Spectroscopy, 2006, 37, 263-276.	2.5	30
110	The vinyl-sulfonium bond in human myeloperoxidase: Impact on compound I formation and reduction by halides and thiocyanate. Biochemical and Biophysical Research Communications, 2007, 356, 450-456.	2.1	30
111	Mechanism of reaction of horseradish peroxidase with chlorite and chlorine dioxide. Journal of Inorganic Biochemistry, 2008, 102, 293-302.	3.5	30
112	Evaluation of New Scaffolds of Myeloperoxidase Inhibitors by Rational Design Combined with High-Throughput Virtual Screening. Journal of Medicinal Chemistry, 2012, 55, 7208-7218.	6.4	30
113	Redox Thermodynamics of High-Spin and Low-Spin Forms of Chlorite Dismutases with Diverse Subunit and Oligomeric Structures. Biochemistry, 2012, 51, 9501-9512.	2.5	30
114	Isoniazid as a substrate and inhibitor of myeloperoxidase: Identification of amine adducts and the influence of superoxide dismutase on their formation. Biochemical Pharmacology, 2012, 84, 949-960.	4.4	30
115	Construction of pHâ€sensitive Her2â€binding IgG1â€Fc by directed evolution. Biotechnology Journal, 2014, 9, 1013-1022.	3.5	30
116	Myeloperoxidase-catalyzed taurine chlorination: Initial versus equilibrium rate. Archives of Biochemistry and Biophysics, 2007, 466, 221-233.	3.0	29
117	Fcab-HER2 Interaction: a Ménage à Trois. Lessons from X-Ray and Solution Studies. Structure, 2017, 25, 878-889.e5.	3.3	29
118	Distinct Fcα receptor N-glycans modulate the binding affinity to immunoglobulin A (IgA) antibodies. Journal of Biological Chemistry, 2019, 294, 13995-14008.	3.4	29
119	(–)-Epicatechin enhances the chlorinating activity of human myeloperoxidase. Archives of Biochemistry and Biophysics, 2010, 495, 21-27.	3.0	28
120	Conformational and thermal stability of mature dimeric human myeloperoxidase and a recombinant monomeric form from CHO cells. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 375-387.	2.3	28
121	Insights into the Active Site of Coproheme Decarboxylase from Listeria monocytogenes. Biochemistry, 2018, 57, 2044-2057.	2.5	28
122	Redox Cofactor Rotates during Its Stepwise Decarboxylation: Molecular Mechanism of Conversion of Coproheme to Heme <i>b</i> . ACS Catalysis, 2019, 9, 6766-6782.	11.2	28
123	Soluble CuA Domain of Cyanobacterial Cytochrome c Oxidase. Journal of Biological Chemistry, 2004, 279, 10293-10303.	3.4	27
124	Myeloperoxidase-catalyzed chlorination: The quest for the active species. Journal of Inorganic Biochemistry, 2008, 102, 1300-1311.	3.5	27
125	Redox Thermodynamics of the Ferricâ~'Ferrous Couple of Wild-Type Synechocystis KatG and KatG(Y249F). Biochemistry, 2006, 45, 4768-4774.	2.5	26
126	Cyanobacterial cytochrome cM: Probing its role as electron donor for CuA of cytochrome c oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 135-143.	1.0	26

#	Article	IF	CITATIONS
127	Eukaryotic extracellular catalase–peroxidase from Magnaporthe grisea – Biophysical/chemical characterization of the first representative from a novel phytopathogenic KatG group. Biochimie, 2012, 94, 673-683.	2.6	26
128	Mechanism of chlorite degradation to chloride and dioxygen by the enzyme chlorite dismutase. Archives of Biochemistry and Biophysics, 2015, 574, 18-26.	3.0	26
129	Molecular Mechanism of Enzymatic Chlorite Detoxification: Insights from Structural and Kinetic Studies. ACS Catalysis, 2017, 7, 7962-7976.	11.2	26
130	Long-Term Effects of (–)-Epigallocatechin Gallate (EGCG) on Pristane-Induced Arthritis (PIA) in Female Dark Agouti Rats. PLoS ONE, 2016, 11, e0152518.	2.5	26
131	Engineering the proximal heme cavity of catalase-peroxidase. Journal of Inorganic Biochemistry, 2002, 91, 78-86.	3.5	25
132	Disruption of the Aspartate to Heme Ester Linkage in Human Myeloperoxidase. Journal of Biological Chemistry, 2007, 282, 17041-17052.	3.4	25
133	Mechanism of reaction of chlorite with mammalian heme peroxidases. Journal of Inorganic Biochemistry, 2014, 135, 10-19.	3.5	25
134	Multidomain Human Peroxidasin 1 Is a Highly Glycosylated and Stable Homotrimeric High Spin Ferric Peroxidase. Journal of Biological Chemistry, 2015, 290, 10876-10890.	3.4	25
135	Human peroxidasin 1 promotes angiogenesis through ERK1/2, Akt, and FAK pathways. Cardiovascular Research, 2019, 115, 463-475.	3.8	25
136	Kinetics of oxygen binding to ferrous myeloperoxidase. Archives of Biochemistry and Biophysics, 2004, 426, 91-97.	3.0	24
137	Intracellular catalase/peroxidase from the phytopathogenic rice blast fungus <i>Magnaporthe grisea</i> : expression analysis and biochemical characterization of the recombinant protein. Biochemical Journal, 2009, 418, 443-451.	3.7	24
138	Chemistry and Molecular Dynamics Simulations of Heme b-HemQ and Coproheme-HemQ. Biochemistry, 2016, 55, 5398-5412.	2.5	24
139	Understanding molecular enzymology of porphyrin-binding αÂ+Âβ barrel proteins - One fold, multiple functions. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140536.	2.3	24
140	The catalytic role of the distal site asparagine-histidine couple in catalase-peroxidases. FEBS Journal, 2003, 270, 1006-1013.	0.2	23
141	Kinetic evidence for rapid oxidation of (–)-epicatechin by human myeloperoxidase. Biochemical and Biophysical Research Communications, 2008, 371, 810-813.	2.1	23
142	Versatile Oxidase and Dehydrogenase Activities of Bacterial Pyranose 2-Oxidase Facilitate Redox Cycling with Manganese Peroxidase <i>In Vitro</i> . Applied and Environmental Microbiology, 2019, 85, .	3.1	23
143	Dimeric chlorite dismutase from the nitrogenâ€fixing cyanobacterium <scp><i>C</i></scp> <i>yanothece</i> sp. <scp>PCC</scp> 7425. Molecular Microbiology, 2015, 96, 1053-1068.	2.5	22
144	From chlorite dismutase towards HemQ–the role of the proximal H-bonding network in haeme binding. Bioscience Reports, 2016, 36, .	2.4	22

#	Article	IF	CITATIONS
145	Posttranslational modification of heme in peroxidases – Impact on structure and catalysis. Archives of Biochemistry and Biophysics, 2018, 643, 14-23.	3.0	22
146	Crystal structures and calorimetry reveal catalytically relevant binding mode of coproporphyrin and coproporphyrin ferrochelatase. FEBS Journal, 2020, 287, 2779-2796.	4.7	22
147	Kinetics of interconversion of redox intermediates of lactoperoxidase, eosinophil peroxidase and myeloperoxidase. Japanese Journal of Infectious Diseases, 2004, 57, S30-1.	1.2	22
148	Nucleotide sequence analysis, overexpression in Escherichia coli and kinetic characterization of Anacystis nidulans catalase-peroxidase**The novel sequence data reported here will appear in the NCBI GenBank under the accession number AF197161 Biochimie, 2000, 82, 211-219.	2.6	21
149	Hemeâ€Copper Oxidases and Their Electron Donors in Cyanobacterial Respiratory Electron Transport. Chemistry and Biodiversity, 2008, 5, 1927-1961.	2.1	21
150	Integrin binding human antibody constant domains—Probing the C-terminal structural loops for grafting the RGD motif. Journal of Biotechnology, 2011, 155, 193-202.	3.8	21
151	High Conformational Stability of Secreted Eukaryotic Catalase-peroxidases. Journal of Biological Chemistry, 2012, 287, 32254-32262.	3.4	21
152	Enhancing hypothiocyanite production by lactoperoxidase – mechanism and chemical properties of promotors. Biochemistry and Biophysics Reports, 2015, 4, 257-267.	1.3	21
153	Purification and Physical-Chemical Characterization of the Three Hydroperoxidases from the Symbiotic BacteriumSinorhizobium melilotiâ€. Biochemistry, 2004, 43, 12692-12699.	2.5	20
154	Stability assessment on a library scale: a rapid method for the evaluation of the commutability and insertion of residues in C-terminal loops of the CH3 domains of IgG1-Fc. Protein Engineering, Design and Selection, 2013, 26, 675-682.	2.1	20
155	Kinetics of electron transfer between plastocyanin and the soluble CuAdomain of cyanobacterial cytochromecoxidase. FEMS Microbiology Letters, 2004, 239, 301-307.	1.8	19
156	Factors Influencing the Study of Peroxidase-Generated Iodine Species and Implications for Thyroglobulin Synthesis. Thyroid, 2008, 18, 769-774.	4.5	19
157	From Dynamic Combinatorial Chemistry to in Vivo Evaluation of Reversible and Irreversible Myeloperoxidase Inhibitors. ACS Medicinal Chemistry Letters, 2017, 8, 206-210.	2.8	19
158	The hydrogen bonding network of coproheme in coproheme decarboxylase from Listeria monocytogenes: Effect on structure and catalysis. Journal of Inorganic Biochemistry, 2019, 195, 61-70.	3.5	19
159	Actinobacterial Coproheme Decarboxylases Use Histidine as a Distal Base to Promote Compound I Formation. ACS Catalysis, 2020, 10, 5405-5418.	11.2	19
160	Spectral and kinetic studies on eosinophil peroxidase compounds I and II and their reaction with ascorbate and tyrosine. BBA - Proteins and Proteomics, 2001, 1548, 121-128.	2.1	18
161	Fast Quantification of Recombinant Protein Inclusion Bodies within Intact Cells by FT-IR Spectroscopy. Biotechnology Progress, 2008, 23, 762-766.	2.6	18
162	Impact of subunit and oligomeric structure on the thermal and conformational stability of chlorite dismutases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 1031-1038.	2.3	18

#	Article	IF	CITATIONS
163	A myeloperoxidase precursor, pro-myeloperoxidase, is present in human plasma and elevated in cardiovascular disease patients. PLoS ONE, 2018, 13, e0192952.	2.5	18
164	Redox thermodynamics of B-class dye-decolorizing peroxidases. Journal of Inorganic Biochemistry, 2019, 199, 110761.	3.5	18
165	The role of the sulfonium linkage in the stabilization of the ferrous form of myeloperoxidase: A comparison with lactoperoxidase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 843-849.	2.3	17
166	Impact of different cultivation and induction regimes on the structure of cytosolic inclusion bodies of TEM1â€Î²â€lactamase. Biotechnology Journal, 2008, 3, 1245-1255.	3.5	17
167	Disruption of the H-bond network in the main access channel of catalase–peroxidase modulates enthalpy and entropy of Fe(III) reduction. Journal of Inorganic Biochemistry, 2010, 104, 648-656.	3.5	17
168	A Stable Bacterial Peroxidase with Novel Halogenating Activity and an Autocatalytically Linked Heme Prosthetic Group. Journal of Biological Chemistry, 2013, 288, 27181-27199.	3.4	17
169	Hybrid molecules inhibiting myeloperoxidase activity and serotonin reuptake: a possible new approach of major depressive disorders with inflammatory syndrome. Journal of Pharmacy and Pharmacology, 2014, 66, 1122-1132.	2.4	17
170	Investigation of Ion Binding in Chlorite Dismutases by Means of Molecular Dynamics Simulations. Biochemistry, 2014, 53, 4869-4879.	2.5	17
171	Immunocytochemical localization of the cytochrome-c oxidase in a cyanobacterium, Synechococcus PCC7942 (Anacystis nidulans). Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1187, 369-372.	1.0	16
172	Manipulating the covalent link between distal side tryptophan, tyrosine, and methionine in catalase-peroxidases: An electronic absorption and resonance Raman study. Biopolymers, 2004, 74, 46-50.	2.4	16
173	Efficient N-Glycosylation of the Heavy Chain Tailpiece Promotes the Formation of Plant-Produced Dimeric IgA. Frontiers in Chemistry, 2020, 8, 346.	3.6	16
174	The role of distal tryptophan in the bifunctional activity of catalase-peroxidases. Biochemical Society Transactions, 2001, 29, 99.	3.4	16
175	Reaction of E. coli catalase HPII with cyanide as ligand and as inhibitor. BBA - Proteins and Proteomics, 1996, 1298, 241-249.	2.1	15
176	How Covalent Heme to Protein Bonds Influence the Formation and Reactivity of Redox Intermediates of a Bacterial Peroxidase. Journal of Biological Chemistry, 2014, 289, 31480-31491.	3.4	15
177	Reaction of pyranose dehydrogenase from AgaricusÂmeleagris with its carbohydrate substrates. FEBS Journal, 2015, 282, 4218-4241.	4.7	15
178	Catalase-Peroxidases in Cyanobacteria – Similarities and Differences to Ascorbate Peroxidases. Free Radical Research, 1999, 31, 243-249.	3.3	14
179	Bovine lactoperoxidase – a versatile one―and twoâ€electron catalyst of high structural and thermal stability. Biotechnology Journal, 2011, 6, 231-243.	3.5	14
180	Kinetics of interprotein electron transfer between cytochromec6and the soluble CuAdomain of cyanobacterial cytochromecoxidase. FEBS Letters, 2004, 576, 101-106.	2.8	13

#	Article	IF	CITATIONS
181	Chemistry and biology of human peroxidases. Archives of Biochemistry and Biophysics, 2006, 445, 197-198.	3.0	13
182	Novel bis-arylalkylamines as myeloperoxidase inhibitors: Design, synthesis, and structure-activity relationship study. European Journal of Medicinal Chemistry, 2016, 123, 746-762.	5.5	13
183	The leucine-rich repeat domain of human peroxidasin 1 promotes binding to laminin in basement membranes. Archives of Biochemistry and Biophysics, 2020, 689, 108443.	3.0	13
184	Substrate specificity and complex stability of coproporphyrin ferrochelatase is governed by hydrogenâ€bonding interactions of the four propionate groups. FEBS Journal, 2022, 289, 1680-1699.	4.7	13
185	Heme peroxidase biochemistry – Facts and perspectives. Archives of Biochemistry and Biophysics, 2010, 500, 1-2.	3.0	12
186	Biochemical characterization of the major N-acetylmuramidase from Lactobacillus buchneri. Microbiology (United Kingdom), 2014, 160, 1807-1819.	1.8	12
187	Reaction intermediate rotation during the decarboxylation of coproheme to heme b in C.Âdiphtheriae. Biophysical Journal, 2021, 120, 3600-3614.	0.5	12
188	Peroxidasin protein expression and enzymatic activity in metastatic melanoma cell lines are associated with invasive potential. Redox Biology, 2021, 46, 102090.	9.0	12
189	Molecular Dynamics Simulation of the Crystallizable Fragment of IgG1—Insights for the Design of Fcabs. International Journal of Molecular Sciences, 2014, 15, 438-455.	4.1	11
190	Two-faced Fcab prevents polymerization with VEGF and reveals thermodynamics and the 2.15ÂÃ crystal structure of the complex. MAbs, 2017, 9, 1088-1104.	5.2	11
191	Myoglobinopathy is an adult-onset autosomal dominant myopathy with characteristic sarcoplasmic inclusions. Nature Communications, 2019, 10, 1396.	12.8	11
192	Monomeric and homotrimeric solution structures of truncated human peroxidasin 1 variants. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140249.	2.3	11
193	On the Track of Long-Range Electron Transfer in B-Type Dye-Decolorizing Peroxidases: Identification of a Tyrosyl Radical by Computational Prediction and Electron Paramagnetic Resonance Spectroscopy. Biochemistry, 2021, 60, 1226-1241.	2.5	11
194	UDP-sulfoquinovose formation by Sulfolobus acidocaldarius. Extremophiles, 2015, 19, 451-467.	2.3	10
195	Characterization of chemical features of potent myeloperoxidase inhibitors. Future Medicinal Chemistry, 2016, 8, 1163-1177.	2.3	10
196	Posttranslational Modification of Heme <i>b</i> in a Bacterial Peroxidase: The Role of Heme to Protein Ester Bonds in Ligand Binding and Catalysis. Biochemistry, 2017, 56, 4525-4538.	2.5	10
197	Secreted heme peroxidase from Dictyostelium discoideum: Insights into catalysis, structure, and biological role. Journal of Biological Chemistry, 2018, 293, 1330-1345.	3.4	10
198	The soluble curcumin derivative NDS27 inhibits superoxide anion production by neutrophils and acts as substrate and reversible inhibitor of myeloperoxidase. Chemico-Biological Interactions, 2019, 297, 34-43.	4.0	10

#	Article	IF	CITATIONS
199	Reaction of human peroxidasin 1 compound I and compound II with one-electron donors. Archives of Biochemistry and Biophysics, 2020, 681, 108267.	3.0	10
200	Agaricus meleagris pyranose dehydrogenase: Influence of covalent FAD linkage on catalysis and stability. Archives of Biochemistry and Biophysics, 2014, 558, 111-119.	3.0	9
201	Fungal Hybrid B heme peroxidases – unique fusions of a heme peroxidase domain with a carbohydrate-binding domain. Scientific Reports, 2017, 7, 9393.	3.3	9
202	Refolding of hexameric porcine leucine aminopeptidase using a cationic detergent and dextrin-10 as artificial chaperones. Journal of Biotechnology, 2009, 140, 162-168.	3.8	8
203	Interaction with the Redox Cofactor MYW and Functional Role of a Mobile Arginine in Eukaryotic Catalase-Peroxidase. Biochemistry, 2016, 55, 3528-3541.	2.5	8
204	The Reaction of Synechocystis Catalase–Peroxidase (KatG) with Isoniazid Investigated by Multifrequency (9–285AGHz) EPR Spectroscopy. Applied Magnetic Resonance, 2010, 37, 267-277.	1.2	7
205	Probing hydrogen peroxide oxidation kinetics of wild-type Synechocystis catalase-peroxidase (KatG) and selected variants. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 799-805.	2.3	7
206	Catalases and hydrogen peroxide metabolism. Archives of Biochemistry and Biophysics, 2012, 525, 93-94.	3.0	7
207	Introduction of germline residues improves the stability of anti-HIV mAb 2G12-IgM. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1536-1544.	2.3	7
208	Correlation between immuno-gold labels and activities of the cytochrome-c oxidase (aa3-type) in membranes of salt stressed cyanobactria. FEMS Microbiology Letters, 1994, 124, 431-437.	1.8	7
209	Molecular diversity of katG genes in the soil bacteria Comamonas. Archives of Microbiology, 2010, 192, 175-184.	2.2	6
210	Probing the two-domain structure of homodimeric prokaryotic and eukaryotic catalase–peroxidases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 2136-2145.	2.3	6
211	Intracellular targeting of ascomycetous catalase-peroxidases (KatG1s). Archives of Microbiology, 2013, 195, 393-402.	2.2	6
212	Cytochrome c and c-554 oxidation by membranous Anacystis nidulans cytochrome oxidase. Biochemical Society Transactions, 1991, 19, 252S-252S.	3.4	5
213	Manipulating the proximal triad His–Asn–Arg in human myeloperoxidase. Archives of Biochemistry and Biophysics, 2011, 516, 21-28.	3.0	5
214	Life Implies Work: A Holistic Account of Our Microbial Biosphere Focussing on the Bioenergetic Processes of Cyanobacteria, the Ecologically Most Successful Organisms on Our Earth. , 2011, , 3-70.		4
215	New insights into thiocyanate oxidation by human myeloperoxidase. Journal of Inorganic Biochemistry, 2016, 162, 117-126.	3.5	4
216	Arresting the Catalytic Arginine in Chlorite Dismutases: Impact on Heme Coordination, Thermal Stability, and Catalysis. Biochemistry, 2021, 60, 621-634.	2.5	4

#	Article	IF	CITATIONS
217	Inhibition of Myeloperoxidase. Handbook of Experimental Pharmacology, 2020, 264, 261-285.	1.8	4
218	Creating stable stem regions for loop elongation in Fcabs — Insights from combining yeast surface display, in silico loop reconstruction and molecular dynamics simulations. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1530-1540.	2.3	3
219	Eukaryotic Catalase-Peroxidase: The Role of the Trp-Tyr-Met Adduct in Protein Stability, Substrate Accessibility, and Catalysis of Hydrogen Peroxide Dismutation. Biochemistry, 2015, 54, 5425-5438.	2.5	3
220	A protein fold with multiple functions: Chlorite dismutase, HemQ and DyP-type peroxidase. Archives of Biochemistry and Biophysics, 2015, 574, 1-2.	3.0	3
221	PhosphoFlowSeq – A High-throughput Kinase Activity Assay for Screening Drug Resistance Mutations in EGFR. Journal of Molecular Biology, 2021, 433, 167210.	4.2	3
222	Cyanobacterial Respiratory Electron Transport: Heme-Copper Oxidases and Their Electron Donors. , 2011, , 657-682.		3
223	Impact of the dynamics of the catalytic arginine on nitrite and chlorite binding by dimeric chlorite dismutase. Journal of Inorganic Biochemistry, 2022, 227, 111689.	3.5	3
224	Mammalian heme peroxidases: From innate immunity to pathology and extracellular matrix biosynthesis. Archives of Biochemistry and Biophysics, 2018, 655, 55.	3.0	2
225	Purification and characterization of a hydroperoxidase from the cyanobacterium Synechocystis PCC 6803: identification of its gene by peptide mass mapping using matrix assisted laser desorption ionization time-of-flight mass spectrometry. FEMS Microbiology Letters, 1999, 170, 1-12.	1.8	2
226	A Fusion Tag to Fold on: The S-Layer Protein SgsE Confers Improved Folding Kinetics to Translationally Fused Enhanced Green Fluorescent Protein. Journal of Microbiology and Biotechnology, 2012, 22, 1271-1278.	2.1	2
227	Editorial: Biomolecular Technology of Proteins – BioToP. Biotechnology Journal, 2014, 9, 453-454.	3.5	1
228	Mechanistic Aspects of Catalase-peroxidase. 2-Oxoglutarate-Dependent Oxygenases, 2015, , 156-180.	0.8	1
229	Pseudoperoxidase activity, conformational stability and aggregation propensity of the His98Tyr myoglobin variant: Implications for the onset of myoglobinopathy. FEBS Journal, 2021, , .	4.7	1
230	On â€~Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium' by Jeffrey K. Glenn and Michael H. Gold. Archives of Biochemistry and Biophysics, 2022, 726, 109257.	3.0	1
231	Origin, Evolution, and Interaction of Bioenergetic Processes in Cyanobacteria under Normal and Stressful Environments. , 2013, , 61-92.		0
232	In Vitro Heme Coordination of a Dye-Decolorizing Peroxidase—The Interplay of Key Amino Acids, pH, Buffer and Glycerol. International Journal of Molecular Sciences, 2021, 22, 9849.	4.1	0
233	Effect of ionizing radiation on human myeloperoxidase: Reaction with hydrated electrons. Journal of Photochemistry and Photobiology B: Biology, 2022, 226, 112369.	3.8	0