Haibo Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5809327/publications.pdf

Version: 2024-02-01

318 papers 44,096 citations

102 h-index 202 g-index

327 all docs

327 docs citations

times ranked

327

34148 citing authors

#	Article	IF	CITATIONS
1	Facet-induced coordination competition for highly ordered CsPbBr3 nanoplatelets with strong polarized emission. Nano Research, 2022, 15, 502-509.	5.8	18
2	Extending Channel Scaling Limit of p-MOSFETs Through Antimonene With Heavy Effective Mass and High Density of State. IEEE Transactions on Electron Devices, 2022, 69, 857-862.	1.6	17
3	Miniaturized Multispectral Detector Derived from Gradient Response Units on Single MAPbX ₃ Microwire. Advanced Materials, 2022, 34, e2108408.	11.1	18
4	A Universal Ternaryâ€Solventâ€Ink Strategy toward Efficient Inkjetâ€Printed Perovskite Quantum Dot Lightâ€Emitting Diodes. Advanced Materials, 2022, 34, e2107798.	11.1	109
5	Perspective on Metal Halides with Selfâ€Trapped Exciton toward White Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	14
6	Water-dispersed CsPbBr ₃ nanocrystals for single molecule localization microscopy with high location accuracy for targeted bioimaging. Nanoscale, 2022, 14, 6392-6401.	2.8	7
7	Enhanced interband tunneling in two-dimensional tunneling transistors through anisotropic energy dispersion. Physical Review B, 2022, 105, .	1.1	16
8	Substantial Improvement of Operating Stability by Strengthening Metalâ€Halogen Bonds in Halide Perovskites. Advanced Functional Materials, 2022, 32, .	7.8	16
9	In Situ Fabrication of Cs ₃ Cu ₂ I ₅ : Tl Nanocrystal Films for High-Resolution and Ultrastable X-ray Imaging. Journal of Physical Chemistry Letters, 2022, 13, 2862-2870.	2.1	39
10	High-definition colorful perovskite narrowband photodetector array enabled by laser-direct-writing. Nano Research, 2022, 15, 5476-5482.	5.8	13
11	Perovskite oxides as a 2D dielectric. Nature Electronics, 2022, 5, 199-200.	13.1	5
12	Charge-carrier dynamics and regulation strategies in perovskite light-emitting diodes: From materials to devices. Applied Physics Reviews, 2022, 9, .	5.5	20
13	High-Performance Monolayer BeN ₂ Transistors With Ultrahigh On-State Current: A DFT Coupled With NEGF Study. IEEE Transactions on Electron Devices, 2022, 69, 4501-4506.	1.6	7
14	Bismuthene. , 2022, , 173-196.		1
15	Dependence of Tunneling Mechanism on Two-Dimensional Material Parameters: A High-Throughput Study. Physical Review Applied, 2022, 17, .	1.5	13
16	High-Performance and Low-Power Transistors Based on Anisotropic Monolayer <i>β</i> - <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>Te</mml:mi><mml:mi ariant="normal" math="">O</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> .	1.5	15
17	Physical Review Applied, 2022, 17, . Overcoming the Anisotropic Growth Limitations of Freeâ€Standing Singleâ€Crystal Halide Perovskite Films. Angewandte Chemie, 2021, 133, 2661-2668.	1.6	5
18	Overcoming the Anisotropic Growth Limitations of Free‧tanding Singleâ€Crystal Halide Perovskite Films. Angewandte Chemie - International Edition, 2021, 60, 2629-2636.	7.2	24

#	Article	IF	CITATIONS
19	Broadband and sensitive two-dimensional halide perovskite photodetector for full-spectrum underwater optical communication. Nano Research, 2021, 14, 1210-1217.	5.8	58
20	CsPbBr ₃ @Cs ₄ PbBr ₆ Emitter-in-Host Composite: Fluorescence Origin and Interphase Energy Transfer. Journal of Physical Chemistry C, 2021, 125, 3-19.	1.5	24
21	Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nature Photonics, 2021, 15, 238-244.	15.6	231
22	A highly sensitive and selective SnS2 monolayer sensor in detecting SF6 decomposition gas. Applied Surface Science, 2021, 541, 148494.	3.1	38
23	Leadâ€Free Halide Double Perovskites: Structure, Luminescence, and Applications. Small Structures, 2021, 2, 2000071.	6.9	71
24	Armor-like passivated CsPbBr ₃ quantum dots: boosted stability with hand-in-hand ligands and enhanced performance of nuclear batteries. Journal of Materials Chemistry A, 2021, 9, 8772-8781.	5.2	13
25	Micro-patterned photoalignment of CsPbBr ₃ nanowires with liquid crystal molecule composite film for polarized emission. Nanoscale, 2021, 13, 14980-14986.	2.8	10
26	One-pot synthesis of Cs ₃ Cu ₂ I ₅ nanocrystals based on thermodynamic equilibrium. Materials Chemistry Frontiers, 2021, 5, 6152-6159.	3.2	22
27	The Synergy of Plasmonic Enhancement and Hotâ€Electron Effect on CsPbBr ₃ Nanosheets Photodetector. Advanced Materials Interfaces, 2021, 8, 2002053.	1.9	12
28	Oriented Perovskite Growth Regulation Enables Sensitive Broadband Detection and Imaging of Polarized Photons Covering 300–1050Ânm. Advanced Materials, 2021, 33, e2003852.	11.1	32
29	Fluorination suppresses thermal quenching in perovskite QLEDs. Science China Chemistry, 2021, 64, 1113-1114.	4.2	0
30	Metal Halide Perovskites for Optical Parametric Modulation. Journal of Physical Chemistry Letters, 2021, 12, 3090-3098.	2.1	7
31	White light-emitting diodes from perovskites. Journal of Semiconductors, 2021, 42, 030202.	2.0	14
32	Quantum Transport in Monolayer αâ€CS Fieldâ€Effect Transistors. Advanced Electronic Materials, 2021, 7, 2001169.	2.6	6
33	Amplifying Surface Energy Difference toward Anisotropic Growth of Allâ€Inorganic Perovskite Singleâ€Crystal Wires for Highly Sensitive Photodetector. Advanced Functional Materials, 2021, 31, 2101966.	7.8	21
34	Mn2+ induced significant improvement and robust stability of radioluminescence in Cs3Cu2I5 for high-performance nuclear battery. Nature Communications, 2021, 12, 3879.	5.8	76
35	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	7.3	705
36	Pressurized Alloying Assisted Synthesis of High Quality Antimonene for Capacitive Deionization. Advanced Functional Materials, 2021, 31, 2102766.	7.8	15

#	Article	IF	CITATIONS
37	Efficient Full-Color Boron Nitride Quantum Dots for Thermostable Flexible Displays. ACS Nano, 2021, 15, 14610-14617.	7.3	32
38	Strong Polarized Photoluminescence CsPbBr ₃ Nanowire Composite Films for UV Spectral Conversion Polarization Photodetector Enhancement. ACS Applied Materials & Diterfaces, 2021, 13, 36147-36156.	4.0	20
39	Halide ion migration in lead-free all-inorganic cesium tin perovskites. Applied Physics Letters, 2021, 119,	1.5	14
40	Operational and Spectral Stability of Perovskite Light-Emitting Diodes. ACS Energy Letters, 2021, 6, 3114-3131.	8.8	46
41	Perovskite Anion Exchange: A Microdynamics Model and a Polar Adsorption Strategy for Precise Control of Luminescence Color. Advanced Functional Materials, 2021, 31, 2106871.	7.8	45
42	Stabilizing electroluminescence color of blue perovskite LEDs via amine group doping. Science Bulletin, 2021, 66, 2189-2198.	4.3	48
43	Perovskite Single Crystals: Synthesis, Optoelectronic Properties, and Application. Advanced Functional Materials, 2021, 31, 2008684.	7.8	70
44	Nonlinear Optics in Lead Halide Perovskites: Mechanisms and Applications. ACS Photonics, 2021, 8, 113-124.	3.2	80
45	Efficient, Stable, and Tunable Cold/Warm White Light from Leadâ€Free Halide Double Perovskites Cs ₂ Zr _{1â€} <i>_x</i> Te <i>_x</i> Cl ₆ . Advanced Optical Materials, 2021, 9, 2100815.	3.6	30
46	Optical-field induced SU(2) pair potential in caesium lead halide perovskites. International Journal of Modern Physics B, 2021, 35, 2150030.	1.0	0
47	P-Type AsP Nanosheet as an Electron Donor for Stable Solar Broad-Spectrum Hydrogen Evolution. ACS Applied Materials & Samp; Interfaces, 2021, 13, 55102-55111.	4.0	2
48	Defect Behaviors in Perovskite Light-Emitting Diodes. , 2021, 3, 1702-1728.		27
49	Perovskite White Light Emitting Diodes: Progress, Challenges, and Opportunities. ACS Nano, 2021, 15, 17150-17174.	7.3	101
50	Halide perovskite materials as light harvesters for solar energy conversion. EnergyChem, 2020, 2, 100026.	10.1	24
51	Advances of 2D bismuth in energy sciences. Chemical Society Reviews, 2020, 49, 263-285.	18.7	138
52	Bionic Detectors Based on Lowâ€Bandgap Inorganic Perovskite for Selective NIR†Photon Detection and Imaging. Advanced Materials, 2020, 32, e1905362.	11.1	83
53	Welding Perovskite Nanowires for Stable, Sensitive, Flexible Photodetectors. ACS Nano, 2020, 14, 2777-2787.	7.3	90
54	Lead-free, stable, high-efficiency (52%) blue luminescent FA ₃ Bi ₂ Br ₉ perovskite quantum dots. Nanoscale Horizons, 2020, 5, 580-585.	4.1	70

#	Article	IF	CITATIONS
55	Shining Emitter in a Stable Host: Design of Halide Perovskite Scintillators for X-ray Imaging from Commercial Concept. ACS Nano, 2020, 14, 5183-5193.	7.3	205
56	Singleâ€Solvent, Ligandâ€Free, Gramâ€Scale Synthesis of Cs 4 PbBr 6 Perovskite Solids with Robust Green Photoluminescence. ChemNanoMat, 2020, 6, 258-266.	1.5	11
57	Energy Manipulation in Lanthanideâ€Doped Core–Shell Nanoparticles for Tunable Dualâ€Mode Luminescence toward Advanced Antiâ€Counterfeiting. Advanced Materials, 2020, 32, e2002121.	11.1	165
58	Antimonene nanosheets fabricated by laser irradiation technique with outstanding nonlinear absorption responses. Applied Physics Letters, 2020, 116, .	1.5	12
59	Synthesis of single CsPbBr ₃ @SiO ₂ core–shell particles <i>via</i> activation. Journal of Materials Chemistry C, 2020, 8, 17403-17409.	2.7	36
60	High-performance vertical field-effect transistors based on all-inorganic perovskite microplatelets. Journal of Materials Chemistry C, 2020, 8, 12632-12637.	2.7	16
61	Progress and perspective on CsPbX3 nanocrystals for light emitting diodes and solar cells. Journal of Applied Physics, 2020, 128, .	1.1	20
62	A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nature Communications, 2020, 11, 3902.	5.8	204
63	First-principle study of puckered arsenene MOSFET. Journal of Semiconductors, 2020, 41, 082006.	2.0	4
64	Ultrascaled Double-Gate Monolayer <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>Sn</mml:mi><mml:mi></mml:mi>Kmml:mi>Kmml:mi>Kmml:mi>Kmml:mi>Kmml:mi>Kmml:mi>Kmml:mi>Kmml:math>Kmml:math>Kmml:msub>Kmml:math>Kmml:msub>Kmml:math>Kmml:msub>Kmml:math>Kmml:msub>Kmml:math>Kmml:msub>Kmml:math>Kmml:msub>Kmml:math>Kmml:msub>Kmml:math>Kmml:msub>Kmml:math>Kmml:msub>Kmml:math>Kmml:msub>Kmml:math>Kmml:msub>Kmml:math>Kmml:msub>Kmml:msu</mml:mrow></mml:msub></mml:math>	1.5	21
65	Perovskite light-emitting/detecting bifunctional fibres for wearable LiFi communication. Light: Science and Applications, 2020, 9, 163.	7.7	81
66	High-performance monolayer Na ₃ Sb shrinking transistors: a DFT-NEGF study. Nanoscale, 2020, 12, 18931-18937.	2.8	11
67	Efficient Blue Perovskite Lightâ€Emitting Diodes Boosted by 2D/3D Energy Cascade Channels. Advanced Functional Materials, 2020, 30, 2001732.	7.8	118
68	Giant efficiency and color purity enhancement in multicolor inorganic perovskite light-emitting diodes via heating-assisted vacuum deposition. Journal of Semiconductors, 2020, 41, 052205.	2.0	19
69	Perovskite Nanocrystal Fluorescence-Linked Immunosorbent Assay Methodology for Sensitive Point-of-Care Biological Test. Matter, 2020, 3, 273-286.	5.0	46
70	Two-dimensional halide perovskite as \hat{l}^2 -ray scintillator for nuclear radiation monitoring. Nature Communications, 2020, 11, 3395.	5.8	110
71	Deep-Ultraviolet Plasmon Resonances in Al-Al ₂ O ₃ @C Core–Shell Nanoparticles Prepared via Laser Ablation in Liquid. ACS Applied Electronic Materials, 2020, 2, 802-807.	2.0	3
72	Anisotropic Inâ€Plane Ballistic Transport in Monolayer Black Arsenicâ€Phosphorus FETs. Advanced Electronic Materials, 2020, 6, 1901281.	2.6	59

#	Article	IF	CITATIONS
73	Two-Dimensional BAs/InTe: A Promising Tandem Solar Cell with High Power Conversion Efficiency. ACS Applied Materials & Distriction (12, 6074-6081).	4.0	32
74	Designing sub-10-nm Metal-Oxide-Semiconductor Field-Effect Transistors via Ballistic Transport and Disparate Effective Mass: The Case of Two-Dimensional <mml:math display="inline" overline="" overline"="" td="" xmlns:mml="http://www.w3.org/1998/Math/Math/Mt" ="" <=""><td>1.5</td><td>69</td></mml:math>	1.5	69
75	mathvariant="normal">N. Physical Review Applied, 2020, 13, . Allâ€Perovskite Integrated Xâ€Ray Detector with Ultrahigh Sensitivity. Advanced Optical Materials, 2020, 8, 2000273.	3.6	61
76	Charge Transfer Boosting Moisture Resistance of Seminude Perovskite Nanocrystals via Hierarchical Alumina Modulation. Journal of Physical Chemistry Letters, 2020, 11, 3159-3165.	2.1	16
77	Research Progress on the Stability of CsPbX ₃ Nanocrystals. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2020, 35, 1088.	0.6	3
78	Engineering Interfaces to Steer Hole Dynamics of BiVO ₄ Photoanodes for Solar Water Oxidation. Solar Rrl, 2019, 3, 1900115.	3.1	23
79	Photon-Induced Reshaping in Perovskite Material Yields of Nanocrystals with Accurate Control of Size and Morphology. Journal of Physical Chemistry Letters, 2019, 10, 4149-4156.	2.1	18
80	2D Vâ€V Binary Materials: Status and Challenges. Advanced Materials, 2019, 31, e1902352.	11.1	303
81	Lattice restraint induced ultra-large bandgap widening of ZnO nanoparticles. Journal of Materials Chemistry C, 2019, 7, 8969-8974.	2.7	8
82	Waterâ∈Assisted Synthesis of Blue Chip Excitable 2D Halide Perovskite with Greenâ∈Red Dual Emissions for White LEDs. Small Methods, 2019, 3, 1900365.	4.6	25
83	Recent advances and prospects toward blue perovskite materials and lightâ€emitting diodes. InformaÄnÃ- Materiály, 2019, 1, 211-233.	8.5	84
84	Interfacialâ€Tunnelingâ€Effectâ€Enhanced CsPbBr ₃ Photodetectors Featuring High Detectivity and Stability. Advanced Functional Materials, 2019, 29, 1904461.	7.8	70
85	Lateral cavity enabled Fabry-Perot microlasers from all-inorganic perovskites. Applied Physics Letters, 2019, 115, .	1.5	21
86	Organic composition tailored perovskite solar cells and light-emitting diodes: Perspectives and advances. Materials Today Energy, 2019, 14, 100338.	2.5	9
87	Two-dimensional SnSe/GeSe van der Waals heterostructure with strain-tunable electronic and optical properties. Journal of Physics and Chemistry of Solids, 2019, 131, 223-229.	1.9	20
88	Novel optoelectronic rotors based on orthorhombic CsPb(Br/I) ₃ nanorods. Nanoscale, 2019, 11, 3117-3122.	2.8	14
89	Tailoring natural layered \hat{l}^2 -phase antimony into few layer antimonene for Li storage with high rate capabilities. Journal of Materials Chemistry A, 2019, 7, 3238-3243.	5.2	54
90	Highly Luminescent and Stable Halide Perovskite Nanocrystals. ACS Energy Letters, 2019, 4, 673-681.	8.8	129

#	Article	IF	Citations
91	Ultrathin Bismuth Nanosheets for Stable Na-Ion Batteries: Clarification of Structure and Phase Transition by in Situ Observation. Nano Letters, 2019, 19, 1118-1123.	4.5	124
92	Robust two-dimensional topological insulators in derivatives of group-VA oxides with large band gap: Tunable quantum spin Hall states. Applied Materials Today, 2019, 15, 163-170.	2.3	13
93	Unusual Electronic Transitions in Two-dimensional Layered <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>Sn</mml:mi><mml:mi>Sb</mml:mi>SbXmml:mi>X</mml:mrow></mml:msub></mml:math>	mn>2 <td>nl:mn></td>	nl:mn>
94	Electronic band structures and optical properties of atomically thin AuSe: first-principle calculations. Journal of Semiconductors, 2019, 40, 062004.	2.0	7
95	Modulating Epitaxial Atomic Structure of Antimonene through Interface Design. Advanced Materials, 2019, 31, e1902606.	11.1	84
96	CsPbBr ₃ Quantum Dots 2.0: Benzenesulfonic Acid Equivalent Ligand Awakens Complete Purification. Advanced Materials, 2019, 31, e1900767.	11.1	329
97	A Facile Approach to Solid-State White Emissive Carbon Dots and Their Application in UV-Excitable and Single-Component-Based White LEDs. Nanomaterials, 2019, 9, 725.	1.9	25
98	Self-template Synthesis of Metal Halide Perovskite Nanotubes as Functional Cavities for Tailored Optoelectronic Devices. ACS Applied Materials & Samp; Interfaces, 2019, 11, 21100-21108.	4.0	6
99	Band engineering realized by chemical combination in 2D group VA–VA materials. Nanoscale Horizons, 2019, 4, 1145-1152.	4.1	15
100	Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts. Nature Communications, 2019, 10, 2001.	5.8	222
101	Surface Halogen Compensation for Robust Performance Enhancements of CsPbX ₃ Perovskite Quantum Dots. Advanced Optical Materials, 2019, 7, 1900276.	3.6	138
102	Perovskite–Ion Beam Interactions: Toward Controllable Light Emission and Lasing. ACS Applied Materials & Controllable Light Emission and Lasing & Controllable Light & Controllable Light &	4.0	38
103	QLED goes to be both bright and efficient. Science Bulletin, 2019, 64, 464-465.	4.3	5
104	Temperature Dependent Reflectance and Ellipsometry Studies on a CsPbBr ₃ Single Crystal. Journal of Physical Chemistry C, 2019, 123, 10564-10570.	1.5	37
105	Recent advances in Sb-based III–V nanowires. Nanotechnology, 2019, 30, 212002.	1.3	8
106	Laser induced ion migration in all-inorganic mixed halide perovskite micro-platelets. Nanoscale Advances, 2019, 1, 4459-4465.	2.2	25
107	Electronic structure and transport properties of 2D RhTeCl: a NEGF-DFT study. Nanoscale, 2019, 11, 20461-20466.	2.8	8
108	Topologically protected states and half-metal behaviors: Defect-strain synergy effects in two-dimensional antimonene. Physical Review Materials, 2019, 3, .	0.9	7

#	Article	IF	CITATIONS
109	Two-Dimensional Pnictogen for Field-Effect Transistors. Research, 2019, 2019, 1046329.	2.8	34
110	Green laser irradiation-stimulated fullerene-like MoS2 nanospheres for tribological applications. Tribology International, 2018, 122, 119-124.	3.0	23
111	Ultrathin tellurium dioxide: emerging direct bandgap semiconductor with high-mobility transport anisotropy. Nanoscale, 2018, 10, 8397-8403.	2.8	66
112	Highly Efficient Carbon Dots with Reversibly Switchable Green–Red Emissions for Trichromatic White Light-Emitting Diodes. ACS Applied Materials & Light-Emitting Diodes. ACS Applied Diodes. ACS Applied Diodes. ACS Applied Diodes. ACS Applied Diodes. ACS ACS Applied Diodes. ACS	4.0	147
113	Few-Layer Antimonene: Anisotropic Expansion and Reversible Crystalline-Phase Evolution Enable Large-Capacity and Long-Life Na-lon Batteries. ACS Nano, 2018, 12, 1887-1893.	7.3	175
114	Porous silaphosphorene, silaarsenene and silaantimonene: a sweet marriage of Si and P/As/Sb. Journal of Materials Chemistry A, 2018, 6, 3738-3746.	5.2	14
115	Origin of green luminescence in carbon quantum dots: specific emission bands originate from oxidized carbon groups. New Journal of Chemistry, 2018, 42, 4603-4611.	1.4	58
116	Heterogeneous Nucleation toward Polarâ€Solventâ€Free, Fast, and Oneâ€Pot Synthesis of Highly Uniform Perovskite Quantum Dots for Wider Color Gamut Display. Advanced Materials Interfaces, 2018, 5, 1800010.	1.9	49
117	DFT coupled with NEGF study of a promising two-dimensional channel material: black phosphorene-type GaTeCl. Nanoscale, 2018, 10, 3350-3355.	2.8	37
118	Broadband Nonlinear Photoresponse of 2D TiS ₂ for Ultrashort Pulse Generation and Allâ€Optical Thresholding Devices. Advanced Optical Materials, 2018, 6, 1701166.	3.6	248
119	Boosting Two-Dimensional MoS ₂ /CsPbBr ₃ Photodetectors via Enhanced Light Absorbance and Interfacial Carrier Separation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 2801-2809.	4.0	207
120	Two-dimensional CsPbBr ₃ /PCBM heterojunctions for sensitive, fast and flexible photodetectors boosted by charge transfer. Nanotechnology, 2018, 29, 085201.	1.3	33
121	Recent progress in 2D group-VA semiconductors: from theory to experiment. Chemical Society Reviews, 2018, 47, 982-1021.	18.7	697
122	Zinc Stannate Nanocrystal–Based Ultrarapidâ€Response UV Photodetectors. Advanced Materials Technologies, 2018, 3, 1800085.	3.0	18
123	Fiberâ€Shaped ZnO/Graphene Schottky Photodetector with Strain Effect. Advanced Materials Interfaces, 2018, 5, 1800136.	1.9	31
124	Surface Chemistry of All Inorganic Halide Perovskite Nanocrystals: Passivation Mechanism and Stability. Advanced Materials Interfaces, 2018, 5, 1701662.	1.9	230
125	A versatile platform for the highly efficient preparation of graphene quantum dots: photoluminescence emission and hydrophilicity–hydrophobicity regulation and organelle imaging. Nanoscale, 2018, 10, 1532-1539.	2.8	27
126	Laser Irradiationâ€Induced SiC@Graphene Subâ€Microspheres: A Bioinspired Core–Shell Structure for Enhanced Tribology Properties. Advanced Materials Interfaces, 2018, 5, 1700839.	1.9	10

#	Article	IF	CITATIONS
127	Perovskite photodetectors with both visible-infrared dual-mode response and super-narrowband characteristics towards photo-communication encryption application. Nanoscale, 2018, 10, 359-365.	2.8	32
128	<i>In situ</i> formation of CsPbBr ₃ /ZnO bulk heterojunctions towards photodetectors with ultrahigh responsivity. Journal of Materials Chemistry C, 2018, 6, 12164-12169.	2.7	35
129	An Ångström-level <i>d</i> -spacing controlling synthetic route for MoS ₂ towards stable intercalation of sodium ions. Journal of Materials Chemistry A, 2018, 6, 22513-22518.	5.2	24
130	Mechanistic Understanding of Two-Dimensional Phosphorus, Arsenic, and Antimony High-Capacity Anodes for Fast-Charging Lithium/Sodium Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 29559-29566.	1.5	38
131	Narrowband Perovskite Photodetector-Based Image Array for Potential Application in Artificial Vision. Nano Letters, 2018, 18, 7628-7634.	4.5	180
132	Switching excitonic recombination and carrier trapping in cesium lead halide perovskites by air. Communications Physics, 2018, $1, \dots$	2.0	59
133	Stable, Efficient Red Perovskite Lightâ€Emitting Diodes by (α, Î) sPbl ₃ Phase Engineering. Advanced Functional Materials, 2018, 28, 1804285.	7.8	105
134	Organic–Inorganic Hybrid Passivation Enables Perovskite QLEDs with an EQE of 16.48%. Advanced Materials, 2018, 30, e1805409.	11.1	409
135	Emissions at Perovskite Quantum Dot/Film Interface with Halide Anion Exchange. ACS Photonics, 2018, 5, 4504-4512.	3.2	17
136	Spaceâ€Confined Growth of CsPbBr ₃ Film Achieving Photodetectors with High Performance in All Figures of Merit. Advanced Functional Materials, 2018, 28, 1804394.	7.8	108
137	A Perovskite Lightâ€Emitting Device Driven by Lowâ€Frequency Alternating Current Voltage. Advanced Optical Materials, 2018, 6, 1800206.	3.6	29
138	In Situ Passivation of PbBr ₆ ^{4â€"} Octahedra toward Blue Luminescent CsPbBr ₃ Nanoplatelets with Near 100% Absolute Quantum Yield. ACS Energy Letters, 2018, 3, 2030-2037.	8.8	402
139	A class of Pb-free double perovskite halide semiconductors with intrinsic ferromagnetism, large spin splitting and high Curie temperature. Materials Horizons, 2018, 5, 961-968.	6.4	59
140	Metal Halide Perovskites: Synthesis, Ion Migration, and Application in Fieldâ€Effect Transistors. Small, 2018, 14, e1801460.	5.2	88
141	Band offsets in new BN/BX (X = P, As, Sb) lateral heterostructures based on bond-orbital theory. Nanoscale, 2018, 10, 15918-15925.	2.8	18
142	Recent Advances in Group III–V Nanowire Infrared Detectors. Advanced Optical Materials, 2018, 6, 1800256.	3.6	43
143	Bubble dimer dynamics induced by dual laser beam ablation in liquid. Applied Physics Letters, 2018, 113, .	1.5	18
144	Highâ€Efficiency Pureâ€Color Inorganic Halide Perovskite Emitters for Ultrahighâ€Definition Displays: Progress for Backlighting Displays and Electrically Driven Devices. Small Methods, 2018, 2, 1700382.	4.6	47

#	Article	IF	CITATIONS
145	Roomâ€Temperature Tripleâ€Ligand Surface Engineering Synergistically Boosts Ink Stability, Recombination Dynamics, and Charge Injection toward EQEâ€11.6% Perovskite QLEDs. Advanced Materials, 2018, 30, e1800764.	11.1	431
146	Highâ€Performance Lowâ€Voltageâ€Driven Phototransistors through CsPbBr ₃ –2D Crystal van der Waals Heterojunctions. Advanced Optical Materials, 2018, 6, 1800152.	3.6	41
147	Perovskite nanocrystals: synthesis, properties and applications. Science Bulletin, 2017, 62, 369-380.	4.3	96
148	All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications. Small, 2017, 13, 1603996.	5.2	537
149	Constructing Fast Carrier Tracks into Flexible Perovskite Photodetectors To Greatly Improve Responsivity. ACS Nano, 2017, 11, 2015-2023.	7.3	274
150	Twoâ€Dimensional Metal Halide Perovskites: Theory, Synthesis, and Optoelectronics. Small Methods, 2017, 1, 1600018.	4.6	115
151	Solutionâ€Processed Low Threshold Vertical Cavity Surface Emitting Lasers from Allâ€Inorganic Perovskite Nanocrystals. Advanced Functional Materials, 2017, 27, 1605088.	7.8	242
152	Preparation and application of carbon-nanodot@NaCl composite phosphors with strong green emission. Journal of Colloid and Interface Science, 2017, 497, 165-171.	5.0	47
153	All-inorganic quantum-dot light-emitting diodes based on perovskite emitters with low turn-on voltage and high humidity stability. Journal of Materials Chemistry C, 2017, 5, 4565-4570.	2.7	149
154	Lowâ€Voltage Photodetectors with High Responsivity Based on Solutionâ€Processed Micrometerâ€Scale Allâ€Inorganic Perovskite Nanoplatelets. Small, 2017, 13, 1700364.	5.2	119
155	Ultralarge Allâ€Inorganic Perovskite Bulk Single Crystal for Highâ€Performance Visible–Infrared Dualâ€Modal Photodetectors. Advanced Optical Materials, 2017, 5, 1700157.	3.6	244
156	Antimonene Oxides: Emerging Tunable Direct Bandgap Semiconductor and Novel Topological Insulator. Nano Letters, 2017, 17, 3434-3440.	4.5	250
157	Van der Waals bilayer antimonene: A promising thermophotovoltaic cell material with 31% energy conversion efficiency. Nano Energy, 2017, 38, 561-568.	8.2	92
158	Dimensionality and Interface Engineering of 2D Homologous Perovskites for Boosted Charge-Carrier Transport and Photodetection Performances. Journal of Physical Chemistry Letters, 2017, 8, 2565-2572.	2.1	77
159	An all-inkjet-printed flexible UV photodetector. Nanoscale, 2017, 9, 8580-8585.	2.8	49
160	Enhancement of adjustable localized surface plasmon resonance in ZnO nanocrystals via a dual doping approach. Science Bulletin, 2017, 62, 693-699.	4.3	16
161	Surface states engineering carbon dots as multi-band light active sensitizers for ZnO nanowire array photoanode to boost solar water splitting. Carbon, 2017, 121, 201-208.	5.4	38
162	Boosting Fiber-Shaped Photodetectors via "Soft―Interfaces. ACS Applied Materials & Diterfaces, 2017, 9, 12092-12099.	4.0	30

#	Article	IF	Citations
163	Constructing Mieâ€Scattering Porous Interfaceâ€Fused Perovskite Films to Synergistically Boost Light Harvesting and Carrier Transport. Angewandte Chemie - International Edition, 2017, 56, 5232-5236.	7.2	75
164	Constructing Mieâ€Scattering Porous Interfaceâ€Fused Perovskite Films to Synergistically Boost Light Harvesting and Carrier Transport. Angewandte Chemie, 2017, 129, 5316-5320.	1.6	12
165	Two-dimensional SiP: an unexplored direct band-gap semiconductor. 2D Materials, 2017, 4, 015030.	2.0	78
166	Nanowire-based transparent conductors for flexible electronics and optoelectronics. Science Bulletin, 2017, 62, 143-156.	4.3	57
167	Wearable and visual pressure sensors based on Zn ₂ GeO ₄ @polypyrrole nanowire aerogels. Journal of Materials Chemistry C, 2017, 5, 11018-11024.	2.7	34
168	High Performance Metal Halide Perovskite Lightâ€Emitting Diode: From Material Design to Device Optimization. Small, 2017, 13, 1701770.	5.2	209
169	Recent progress of metal halide perovskite photodetectors. Journal of Materials Chemistry C, 2017, 5, 11369-11394.	2.7	138
170	Enhancing Optoelectronic Properties of Low-Dimensional Halide Perovskite via Ultrasonic-Assisted Template Refinement. ACS Applied Materials & Samp; Interfaces, 2017, 9, 39602-39609.	4.0	12
171	Improving Wearable Photodetector Textiles via Precise Energy Level Alignment and Plasmonic Effect. Advanced Electronic Materials, 2017, 3, 1700281.	2.6	33
172	Field-Effect Transistors Based on van-der-Waals-Grown and Dry-Transferred All-Inorganic Perovskite Ultrathin Platelets. Journal of Physical Chemistry Letters, 2017, 8, 4785-4792.	2.1	91
173	Quantum confinement effect of two-dimensional all-inorganic halide perovskites. Science China Materials, 2017, 60, 811-818.	3.5	38
174	Steering Photoelectrons Excited in Carbon Dots into Platinum Cluster Catalyst for Solarâ€Driven Hydrogen Production. Advanced Science, 2017, 4, 1700273.	5.6	39
175	Simple and Fast Patterning Process by Laser Direct Writing for Perovskite Quantum Dots. Advanced Materials Technologies, 2017, 2, 1700132.	3.0	55
176	Highly stable and flexible photodetector arrays based on low dimensional CsPbBr ₃ microcrystals and on-paper pencil-drawn electrodes. Journal of Materials Chemistry C, 2017, 5, 7441-7445.	2.7	51
177	Cation Exchangeâ€Induced Dimensionality Construction: From Monolayered to Multilayered 2D Single Crystal Halide Perovskites. Advanced Materials Interfaces, 2017, 4, 1700441.	1.9	38
178	Double-Protected All-Inorganic Perovskite Nanocrystals by Crystalline Matrix and Silica for Triple-Modal Anti-Counterfeiting Codes. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26556-26564.	4.0	232
179	Solutionâ€Grown CsPbBr ₃ /Cs ₄ PbBr ₆ Perovskite Nanocomposites: Toward Temperatureâ€Insensitive Optical Gain. Small, 2017, 13, 1701587.	5. 2	134
180	ZrO 2 quantum dots/graphene phototransistors for deep UV detection. Materials Research Bulletin, 2017, 96, 458-462.	2.7	23

#	Article	IF	Citations
181	Stabilizing Cesium Lead Halide Perovskite Lattice through Mn(II) Substitution for Air-Stable Light-Emitting Diodes. Journal of the American Chemical Society, 2017, 139, 11443-11450.	6.6	705
182	Aminoâ€Mediated Anchoring Perovskite Quantum Dots for Stable and Lowâ€Threshold Random Lasing. Advanced Materials, 2017, 29, 1701185.	11.1	269
183	Controlled Synthesis of Ultrathin 2D βâ€In ₂ S ₃ with Broadband Photoresponse by Chemical Vapor Deposition. Advanced Functional Materials, 2017, 27, 1702448.	7.8	194
184	Metallic oxide nanocrystals with near-infrared plasmon resonance for efficient, stable and biocompatible photothermal cancer therapy. Journal of Materials Chemistry B, 2017, 5, 7393-7402.	2.9	25
185	Triangle-, tripod-, and tetrapod-branched ITO nanocrystals for anisotropic infrared plasmonics. Nanoscale, 2017, 9, 19374-19383.	2.8	10
186	Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Research, 2017, 10, 1584-1594.	5.8	134
187	Probing mesoscopic process of laser ablation in liquid by integrated method of optical beam deflection and time-resolved shadowgraphy. Journal of Colloid and Interface Science, 2017, 489, 38-46.	5.0	16
188	From unstable CsSnI3 to air-stable Cs2SnI6: A lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Solar Energy Materials and Solar Cells, 2017, 159, 227-234.	3.0	388
189	Assembling tungsten oxide hydrate nanocrystal colloids formed by laser ablation in liquid into fast-response electrochromic films. Journal of Colloid and Interface Science, 2017, 489, 85-91.	5.0	17
190	50â€Fold EQE Improvement up to 6.27% of Solutionâ€Processed Allâ€Inorganic Perovskite CsPbBr ₃ QLEDs via Surface Ligand Density Control. Advanced Materials, 2017, 29, 1603885.	11.1	982
191	Anomalous plasmon resonance from confined diffusive charges: high quality and tunability from mid to far infrared wavebands. Optics Express, 2016, 24, 29908.	1.7	10
192	Tunable electronic structure and enhanced optical properties in quasi-metallic hydrogenated/fluorinated SiC heterobilayer. Journal of Materials Chemistry C, 2016, 4, 7406-7414.	2.7	27
193	Healing Allâ€Inorganic Perovskite Films via Recyclable Dissolution–Recyrstallization for Compact and Smooth Carrier Channels of Optoelectronic Devices with High Stability. Advanced Functional Materials, 2016, 26, 5903-5912.	7.8	296
194	Toward Efficient Orange Emissive Carbon Nanodots through Conjugated sp ² â€Domain Controlling and Surface Charges Engineering. Advanced Materials, 2016, 28, 3516-3521.	11.1	583
195	Progress of Carbon Quantum Dots in Photocatalysis Applications. Particle and Particle Systems Characterization, 2016, 33, 457-472.	1.2	172
196	Semiconducting Groupâ€15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities. Angewandte Chemie, 2016, 128, 1698-1701.	1.6	315
197	Ternary Oxide Nanocrystals: Universal Laserâ€Hydrothermal Synthesis, Optoelectronic and Electrochemical Applications. Advanced Functional Materials, 2016, 26, 5051-5060.	7.8	58
198	Two-dimensional GeS with tunable electronic properties via external electric field and strain. Nanotechnology, 2016, 27, 274001.	1.3	85

#	Article	IF	Citations
199	Lateral black phosphorene P–N junctions formed via chemical doping for high performance near-infrared photodetector. Nano Energy, 2016, 25, 34-41.	8.2	162
200	Enriching Photoelectrons via Three Transition Channels in Amino-Conjugated Carbon Quantum Dots to Boost Photocatalytic Hydrogen Generation. ACS Applied Materials & Enrichment (1998), 14118-14124.	4.0	57
201	Remedying Defects in Carbon Nitride To Improve both Photooxidation and H ₂ Generation Efficiencies. ACS Catalysis, 2016, 6, 3365-3371.	5.5	148
202	A promising two-dimensional solar cell donor: Black arsenic–phosphorus monolayer with 1.54 eV direct bandgap and mobility exceeding 14,000 cm2Vâ~'1sâ~'1. Nano Energy, 2016, 28, 433-439.	8.2	212
203	Self-powered fiber-shaped wearable omnidirectional photodetectors. Nano Energy, 2016, 30, 173-179.	8.2	82
204	Photon Driven Transformation of Cesium Lead Halide Perovskites from Fewâ€Monolayer Nanoplatelets to Bulk Phase. Advanced Materials, 2016, 28, 10637-10643.	11.1	130
205	A comprehensive investigation on CVD growth thermokinetics of h-BN white graphene. 2D Materials, 2016, 3, 035007.	2.0	31
206	Approaching the Theoretical Capacity of Li ₃ VO ₄ via Electrochemical Reconstruction. Advanced Materials Interfaces, 2016, 3, 1500340.	1.9	97
207	A promising two-dimensional channel material: monolayer antimonide phosphorus. Science China Materials, 2016, 59, 648-656.	3.5	28
208	The structural, electrical and optical properties of Mg-doped ZnO with different interstitial Mg concentration. Materials Chemistry and Physics, 2016, 182, 15-21.	2.0	35
209	Improving Allâ€Inorganic Perovskite Photodetectors by Preferred Orientation and Plasmonic Effect. Small, 2016, 12, 5622-5632.	5.2	314
210	Hydrothermal synthesis of blue-fluorescent monolayer BN and BCNO quantum dots for bio-imaging probes. RSC Advances, 2016, 6, 79090-79094.	1.7	66
211	Nickel concentration-dependent opto-electrical performances and stability of Cu@CuNi nanowire transparent conductors. RSC Advances, 2016, 6, 91394-91400.	1.7	19
212	Semiconductor-topological insulator transition of two-dimensional SbAs induced by biaxial tensile strain. Physical Review B, 2016, 93, .	1.1	118
213	Smooth and solid WS ₂ submicrospheres grown by a new laser fragmentation and reshaping process with enhanced tribological properties. Chemical Communications, 2016, 52, 10147-10150.	2.2	33
214	Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nature Communications, 2016, 7, 13352.	5.8	798
215	Rapid and High-Efficiency Laser-Alloying Formation of ZnMgO Nanocrystals. Scientific Reports, 2016, 6, 28131.	1.6	15
216	Nonlinear Saturable Absorption of Liquidâ€Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets. Small, 2016, 12, 1489-1497.	5.2	211

#	Article	IF	Citations
217	Monolayer and Fewâ€Layer Allâ€Inorganic Perovskites as a New Family of Twoâ€Dimensional Semiconductors for Printable Optoelectronic Devices. Advanced Materials, 2016, 28, 4861-4869.	11.1	614
218	Two-dimensional BX ($X = P$, As, Sb) semiconductors with mobilities approaching graphene. Nanoscale, 2016, 8, 13407-13413.	2.8	122
219	Nearâ€Infrared Plasmonic 2D Semimetals for Applications in Communication and Biology. Advanced Functional Materials, 2016, 26, 1793-1802.	7.8	114
220	CsPbX ₃ Quantum Dots for Lighting and Displays: Roomâ€Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 2435-2445.	7.8	2,055
221	Quantum Dots: CsPbX ₃ Quantum Dots for Lighting and Displays: Roomâ€Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Lightâ€Emitting Diodes (Adv.) Tj ETQ	q17180.784	43 54 rgBT /C
222	Semiconducting Groupâ€15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities. Angewandte Chemie - International Edition, 2016, 55, 1666-1669.	7.2	651
223	Monolayer MoS ₂ –Graphene Hybrid Aerogels with Controllable Porosity for Lithium-Ion Batteries with High Reversible Capacity. ACS Applied Materials & Samp; Interfaces, 2016, 8, 2680-2687.	4.0	191
224	N- and p-type doping of antimonene. RSC Advances, 2016, 6, 14620-14625.	1.7	57
225	Nonlinear Absorption and Low-Threshold Multiphoton Pumped Stimulated Emission from All-Inorganic Perovskite Nanocrystals. Nano Letters, 2016, 16, 448-453.	4.5	494
226	Amorphous ZnO based resistive random access memory. RSC Advances, 2016, 6, 17867-17872.	1.7	109
227	Polyhedral Zn 2 SnO 4: Synthesis, enhanced gas sensing and photocatalytic performance. Sensors and Actuators B: Chemical, 2016, 229, 627-634.	4.0	86
228	A General Oneâ€Pot Strategy for the Synthesis of Highâ€Performance Transparentâ€Conductingâ€Oxide Nanocrystal Inks for Allâ€Solutionâ€Processed Devices. Angewandte Chemie - International Edition, 2015, 54, 462-466.	7.2	52
229	Nanocrystals: Quantum Dot Lightâ€Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX ₃) (Adv. Mater. 44/2015). Advanced Materials, 2015, 27, 7161-7161.	11.1	23
230	GeSe monolayer semiconductor with tunable direct band gap and small carrier effective mass. Applied Physics Letters, 2015, 107, .	1.5	148
231	WS_2 saturable absorber for dissipative soliton mode locking at 106 and 155 Âμm. Optics Express, 2015, 23, 27509.	1.7	187
232	Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review. Advanced Functional Materials, 2015, 25, 4929-4947.	7.8	1,072
233	Quantum Dot Lightâ€Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX ₃). Advanced Materials, 2015, 27, 7162-7167.	11.1	2,457
234	Allâ€Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics. Advanced Materials, 2015, 27, 7101-7108.	11.1	1,095

#	Article	IF	Citations
235	Transparent Electrodes Printed with Nanocrystal Inks for Flexible Smart Devices. Angewandte Chemie - International Edition, 2015, 54, 9760-9774.	7.2	135
236	Cu–N Dopants Boost Electron Transfer and Photooxidation Reactions of Carbon Dots. Angewandte Chemie - International Edition, 2015, 54, 6540-6544.	7.2	244
237	MgZnO Nanocrystals: Mechanism for Dopantâ€Stimulated Selfâ€Assembly. Small, 2015, 11, 5097-5104.	5.2	12
238	In situ electron beam irradiation-driven formation of quantum dots. RSC Advances, 2015, 5, 25717-25722.	1.7	5
239	Ag/white graphene foam for catalytic oxidation of methanol with high efficiency and stability. Journal of Materials Chemistry A, 2015, 3, 6679-6684.	5.2	28
240	2D materials via liquid exfoliation: a review on fabrication and applications. Science Bulletin, 2015, 60, 1994-2008.	4.3	270
241	Structural and electronic properties of atomically thin germanium selenide polymorphs. Science China Materials, 2015, 58, 929-935.	3.5	54
242	The impact of Mg content on the structural, electrical and optical properties of MgZnO alloys: A first principles study. Current Applied Physics, 2015, 15, 423-428.	1.1	52
243	Comment on "Strongly luminescent monolayered MoS2 prepared by effective ultrasound exfoliation― [Nanoscale, 2013, 5, 3387]. Nanoscale, 2015, 7, 4580-4583.	2.8	13
244	Atomically Thin Arsenene and Antimonene: Semimetal–Semiconductor and Indirect–Direct Bandâ€Gap Transitions. Angewandte Chemie - International Edition, 2015, 54, 3112-3115.	7.2	1,211
245	Atomically Thin Arsenene and Antimonene: Semimetal–Semiconductor and Indirect–Direct Bandâ€Gap Transitions. Angewandte Chemie, 2015, 127, 3155-3158.	1.6	397
246	An insight into defect relaxation in metastable ZnO reflected by a unique luminescence and Raman evolutions. Physical Chemistry Chemical Physics, 2015, 17, 19637-19642.	1.3	22
247	Optimizing Hybridization of 1T and 2H Phases in MoS ₂ Monolayers to Improve Capacitances of Supercapacitors. Materials Research Letters, 2015, 3, 177-183.	4.1	149
248	ZnO nanowire lines and bundles: Template-deformation-guided alignment for patterned field-electron emitters. Current Applied Physics, 2015, 15, 1296-1302.	1.1	6
249	3D white graphene foam scavengers: vesicant-assisted foaming boosts the gram-level yield and forms hierarchical pores for superstrong pollutant removal applications. NPG Asia Materials, 2015, 7, e168-e168.	3.8	57
250	Integrating large specific surface area and high conductivity in hydrogenated NiCo2O4 double-shell hollow spheres to improve supercapacitors. NPG Asia Materials, 2015, 7, e165-e165.	3.8	177
251	Tinene: a two-dimensional Dirac material with a 72 meV band gap. Physical Chemistry Chemical Physics, 2015, 17, 12634-12638.	1.3	66
252	Hemi‧hell Arrays Harvesting Ultraâ€Broadband Light. Advanced Optical Materials, 2015, 3, 931-936.	3.6	8

#	Article	IF	CITATIONS
253	Two-Dimensional, Porous Nickel–Cobalt Sulfide for High-Performance Asymmetric Supercapacitors. ACS Applied Materials & Diterfaces, 2015, 7, 19316-19323.	4.0	234
254	Noncovalent Molecular Doping of Twoâ€Dimensional Materials. ChemNanoMat, 2015, 1, 542-557.	1.5	41
255	Hydrogenated arsenenes as planar magnet and Dirac material. Applied Physics Letters, 2015, 107, .	1.5	137
256	Localized surface plasmon resonance of Cu nanoparticles by laser ablation in liquid media. RSC Advances, 2015, 5, 79738-79745.	1.7	101
257	Flexible quantum dot–PVA composites for white LEDs. Journal of Materials Chemistry C, 2015, 3, 257-264.	2.7	41
258	Intercrossed Carbon Nanorings with Pure Surface States as Lowâ€Cost and Environmentâ€Friendly Phosphors for Whiteâ€Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2015, 54, 1759-1764.	7.2	238
259	Controlling oxygen vacancies and properties of ZnO. Current Applied Physics, 2014, 14, 521-527.	1.1	42
260	Superstable Transparent Conductive Cu@Cu ₄ Ni Nanowire Elastomer Composites against Oxidation, Bending, Stretching, and Twisting for Flexible and Stretchable Optoelectronics. Nano Letters, 2014, 14, 6298-6305.	4.5	262
261	Unipolar resistive switching of ZnO-single-wire memristors. Nanoscale Research Letters, 2014, 9, 381.	3.1	22
262	Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Scientific Reports, 2014, 4, .	1.6	544
263	Weak morphology dependent valence band structure of boron nitride. Journal of Applied Physics, 2013, 114, .	1.1	16
264	Epitaxial ZnO Nanowireâ€onâ€Nanoplate Structures as Efficient and Transferable Field Emitters. Advanced Materials, 2013, 25, 5750-5755.	11.1	111
265	Strong room-temperature ferromagnetism of pure ZnO nanostructure arrays via colloidal template. Journal of Materials Chemistry C, 2013, 1, 6807.	2.7	32
266	Two-dimensional semiconductors: recent progress and future perspectives. Journal of Materials Chemistry C, 2013, 1, 2952.	2.7	317
267	ZnO-Based Transparent Conductive Thin Films: Doping, Performance, and Processing. Journal of Nanomaterials, 2013, 2013, 1-9.	1.5	83
268	Multiexciton Generation in Semiconductor Nanocrystals: A Potential Avenue Toward Efficient Solar Cells. Science of Advanced Materials, 2013, 5, 1585-1595.	0.1	4
269	General synthetic strategy for high-yield and uniform rare-earth oxysulfate (RE2O2SO4, RE = La, Pr, Nd,) Tj ETQq1	. 1,0,7843 1.7	314 rgBT /O∨ 27
270	Fabrication and Characterization of Beaded SiC Quantum Rings with Anomalous Red Spectral Shift. Advanced Materials, 2012, 24, 5598-5603.	11.1	65

#	Article	IF	CITATIONS
271	Nanomaterials via Laser Ablation/Irradiation in Liquid: A Review. Advanced Functional Materials, 2012, 22, 1333-1353.	7.8	775
272	Nanomaterial Engineering and Property Studies in a Transmission Electron Microscope. Advanced Materials, 2012, 24, 177-194.	11.1	43
273	Janus particle arrays with multiple structural controlling abilities synthesized by seed-directed deposition. Journal of Materials Chemistry, 2011, 21, 11930.	6.7	18
274	Reshaping Formation and Luminescence Evolution of ZnO Quantum Dots by Laser-Induced Fragmentation in Liquid. Journal of Physical Chemistry C, 2011, 115, 5038-5043.	1.5	70
275	Structural Transformation, Photocatalytic, and Field-Emission Properties of Ridged TiO ₂ Nanotubes. ACS Applied Materials & Interfaces, 2011, 3, 1352-1358.	4.0	59
276	Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications. Journal of Materials Chemistry, 2011, 21, 40-56.	6.7	151
277	Luminescent hollow carbon shells and fullerene-like carbon spheres produced by laser ablation with toluene. Journal of Materials Chemistry, 2011, 21, 4432.	6.7	87
278	A General Strategy for Fabricating Unique Carbide Nanostructures with Excitation Wavelength-Dependent Light Emissions. Journal of Physical Chemistry C, 2011, 115, 7279-7284.	1.5	30
279	Origin of Blue Emission from Silicon Nanoparticles: Direct Transition and Interface Recombination. Journal of Physical Chemistry C, 2011, 115, 21056-21062.	1.5	92
280	Influences of Target and Liquid Media on Morphologies and Optical Properties of <scp>ZnO</scp> Nanoparticles Prepared by Laser Ablation in Solution. Journal of the American Ceramic Society, 2011, 94, 4305-4309.	1.9	18
281	Enhanced photocatalytic activity of hierarchical ZnO nanoplate-nanowire architecture as environmentally safe and facilely recyclable photocatalyst. Nanoscale, 2011, 3, 5020.	2.8	148
282	Tubeâ€inâ€Tube TiO ₂ Nanotubes with Porous Walls: Fabrication, Formation Mechanism, and Photocatalytic Properties. Small, 2011, 7, 445-449.	5.2	101
283	"Chemical Blowing―of Thinâ€Walled Bubbles: Highâ€Throughput Fabrication of Largeâ€Area, Fewâ€Layered and C <i>_x</i> â€BN Nanosheets. Advanced Materials, 2011, 23, 4072-4076.	BN 11.1	217
284	Blue Luminescence of ZnO Nanoparticles Based on Nonâ€Equilibrium Processes: Defect Origins and Emission Controls. Advanced Functional Materials, 2010, 20, 561-572.	7.8	1,540
285	Self-assembled ZnS nanowire arrays: synthesis, <i>in situ </i> Cu doping and field emission. Nanotechnology, 2010, 21, 375601.	1.3	27
286	"White Graphenes― Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping. Nano Letters, 2010, 10, 5049-5055.	4.5	723
287	Electrochemical Deposition of ZnO Nanowire Arrays: Organization, Doping, and Properties. Science of Advanced Materials, 2010, 2, 336-358.	0.1	62
288	Laser power effect on morphology and photoluminescence of ZnO nanostructures by laser ablation in water. Materials Letters, 2009, 63, 191-193.	1.3	19

#	Article	IF	CITATIONS
289	Characterization, Cathodoluminescence, and Fieldâ€Emission Properties of Morphologyâ€Tunable CdS Micro/Nanostructures. Advanced Functional Materials, 2009, 19, 2423-2430.	7.8	114
290	Template Deformationâ€Tailored ZnO Nanorod/Nanowire Arrays: Full Growth Control and Optimization of Fieldâ€Emission. Advanced Functional Materials, 2009, 19, 3165-3172.	7.8	224
291	Controllable Polyol Synthesis of Uniform Palladium Icosahedra: Effect of Twinned Structure on Deformation of Crystalline Lattices. Angewandte Chemie - International Edition, 2009, 48, 6883-6887.	7.2	114
292	ZnO and ZnS Nanostructures: Ultraviolet-Light Emitters, Lasers, and Sensors. Critical Reviews in Solid State and Materials Sciences, 2009, 34, 190-223.	6.8	306
293	Ultra-fine \hat{I}^2 -SiC quantum dots fabricated by laser ablation in reactive liquid at room temperature and their violet emission. Journal of Materials Chemistry, 2009, 19, 7119.	6.7	79
294	Dramatic excitation dependence of strong and stable blue luminescence of ZnO hollow nanoparticles. Applied Physics Letters, 2009, 95, 191904.	1.5	38
295	Optical Study of Redox Behavior of Silicon Nanoparticles Induced by Laser Ablation in Liquid. Journal of Physical Chemistry C, 2009, 113, 6480-6484.	1.5	39
296	From Nanoparticles to Nanoplates: Preferential Oriented Connection of Ag Colloids during Electrophoretic Deposition. Journal of Physical Chemistry C, 2009, 113, 7692-7696.	1.5	44
297	General and Simple Route to Micro/Nanostructured Hollow-Sphere Arrays Based on Electrophoresis of Colloids Induced by Laser Ablation in Liquid. Langmuir, 2009, 25, 8287-8291.	1.6	39
298	Size and Structure Control of Si Nanoparticles by Laser Ablation in Different Liquid Media and Further Centrifugation Classification. Journal of Physical Chemistry C, 2009, 113, 19091-19095.	1.5	112
299	Electrodeposition Growth of Vertical ZnO Nanorod/Polyaniline Heterostructured Films and Their Optical Properties. Journal of Physical Chemistry C, 2009, 113, 15544-15547.	1.5	28
300	Room temperature synthesized rutile TiO ₂ nanoparticles induced by laser ablation in liquid and their photocatalytic activity. Nanotechnology, 2009, 20, 285707.	1.3	103
301	Morphology-Dependent Stimulated Emission and Field Emission of Ordered CdS Nanostructure Arrays. ACS Nano, 2009, 3, 949-959.	7.3	185
302	A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors. Sensors, 2009, 9, 6504-6529.	2.1	491
303	ZnO-Based Hollow Nanoparticles by Selective Etching: Elimination and Reconstruction of Metalâ^'Semiconductor Interface, Improvement of Blue Emission and Photocatalysis. ACS Nano, 2008, 2, 1661-1670.	7.3	530
304	Fabrication and Size-Dependent Optical Properties of FeO Nanoparticles Induced by Laser Ablation in a Liquid Medium. Journal of Physical Chemistry C, 2008, 112, 3261-3266.	1.5	105
305	Controllable Pt/ZnO Porous Nanocages with Improved Photocatalytic Activity. Journal of Physical Chemistry C, 2008, 112, 19620-19624.	1.5	157
306	Ordered n-type ZnO nanorod arrays. Applied Physics Letters, 2008, 92, 132112.	1.5	61

#	Article	IF	CITATIONS
307	Large Scale Fabrication of Quasi-Aligned ZnO Stacking Nanoplates. Journal of Physical Chemistry C, 2008, 112, 5267-5270.	1.5	74
308	Polar-Field-Induced Double-Layer Nanostructured ZnO and Its Strong Violet Photoluminescence. Crystal Growth and Design, 2008, 8, 4367-4371.	1.4	36
309	Polycrystalline Si nanoparticles and their strong aging enhancement of blue photoluminescence. Journal of Applied Physics, 2008, 104, 023516.	1.1	49
310	Aging-Induced Self-Assembly of Zn/ZnO Treelike Nanostructures from Nanoparticles and Enhanced Visible Emission. Crystal Growth and Design, 2007, 7, 1092-1097.	1.4	56
311	Microstructure Control of Zn/ZnO Core/Shell Nanoparticles and Their Temperature-Dependent Blue Emissions. Journal of Physical Chemistry B, 2007, 111, 14311-14317.	1.2	143
312	Strong localization effect in temperature dependence of violet-blue emission from ZnO nanoshells. Journal of Applied Physics, 2007, 102, 104307.	1.1	57
313	Enhancement of the ultraviolet emission of ZnO nanostructures by polyaniline modification. Chemical Physics Letters, 2007, 446, 370-373.	1.2	59
314	Morphology-controlled 2D ordered arrays by heating-induced deformation of 2D colloidal monolayer. Journal of Materials Chemistry, 2006, 16, 609-612.	6.7	43
315	Surface optical phonon Raman scattering in Znâ^•ZnO core-shell structured nanoparticles. Applied Physics Letters, 2006, 88, 181905.	1.5	89
316	Violet photoluminescence from shell layer of Znâ^•ZnO core-shell nanoparticles induced by laser ablation. Applied Physics Letters, 2006, 88, 171910.	1.5	209
317	Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays. Applied Physics Letters, 2006, 88, 161101.	1.5	296
318	Composition/Structural Evolution and Optical Properties of ZnO/Zn Nanoparticles by Laser Ablation in Liquid Media. Journal of Physical Chemistry B, 2005, 109, 18260-18266.	1.2	353