Christopher H Hendon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5809276/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conductivity in Open-Framework Chalcogenides Tuned via Band Engineering and Redox Chemistry. Chemistry of Materials, 2022, 34, 1905-1920.	6.7	7
2	Determining Optical Band Gaps of MOFs. , 2022, 4, 457-463.		24
3	Spectroscopic characterization of Mn2+ and Cd2+ coordination to phosphorothioates in the conserved A9 metal site of the hammerhead ribozyme. Journal of Inorganic Biochemistry, 2022, 230, 111754.	3.5	2
4	Three-Electrode Study of Electrochemical Ionomer Degradation Relevant to Anion-Exchange-Membrane Water Electrolyzers. ACS Applied Materials & Interfaces, 2022, 14, 18261-18274.	8.0	28
5	An electric field-based approach for quantifying effective volumes and radii of chemically affected space. Chemical Science, 2022, 13, 6558-6566.	7.4	5
6	Atomically precise single-crystal structures of electrically conducting 2D metal–organic frameworks. Nature Materials, 2021, 20, 222-228.	27.5	239
7	On the limit of proton-coupled electronic doping in a Ti(<scp>iv</scp>)-containing MOF. Chemical Science, 2021, 12, 11779-11785.	7.4	6
8	What Lies beneath a Metal–Organic Framework Crystal Structure? New Design Principles from Unexpected Behaviors. Journal of the American Chemical Society, 2021, 143, 6705-6723.	13.7	48
9	Electronic Challenges of Retrofitting 2D Electrically Conductive MOFs to Form 3D Conductive Lattices. ACS Applied Electronic Materials, 2021, 3, 2017-2023.	4.3	11
10	<i>N</i> -Methylation of Self-Immolative Thiocarbamates Provides Insights into the Mechanism of Carbonyl Sulfide Release. Journal of Organic Chemistry, 2021, 86, 5443-5451.	3.2	5
11	From n- to p-Type Material: Effect of Metal Ion on Charge Transport in Metal–Organic Materials. ACS Applied Materials & Interfaces, 2021, 13, 52055-52062.	8.0	10
12	Tunable Band Gaps in MUV-10(M): A Family of Photoredox-Active MOFs with Earth-Abundant Open Metal Sites. Journal of the American Chemical Society, 2021, 143, 12609-12621.	13.7	26
13	A porous crystal's penchant for bitter almonds. Matter, 2021, 4, 2651-2652.	10.0	1
14	Divergent Adsorption Behavior Controlled by Primary Coordination Sphere Anions in the Metal–Organic Framework Ni ₂ X ₂ BTDD. Journal of the American Chemical Society, 2021, 143, 16343-16347.	13.7	15
15	Singlet-to-Triplet Spin Transitions Facilitate Selective 1-Butene Formation during Ethylene Dimerization in Ni(II)-MFU-4 <i>l</i> . Journal of Physical Chemistry C, 2021, 125, 22036-22043.	3.1	5
16	Cooperativity and Metal–Linker Dynamics in Spin Crossover Framework Fe(1,2,3-triazolate) ₂ . Chemistry of Materials, 2021, 33, 8534-8545.	6.7	12
17	Switchable electrical conductivity in a three-dimensional metal–organic framework <i>via</i> reversible ligand n-doping. Chemical Science, 2020, 11, 1342-1346.	7.4	50
18	Toward New 2D Zirconium-Based Metal–Organic Frameworks: Synthesis, Structures, and Electronic Properties. Chemistry of Materials, 2020, 32, 97-104.	6.7	37

CHRISTOPHER H HENDON

#	Article	IF	CITATIONS
19	Efficient and tunable one-dimensional charge transport in layered lanthanide metal–organic frameworks. Nature Chemistry, 2020, 12, 131-136.	13.6	214
20	Post-synthetic modification of ionic liquids using ligand-exchange and redox coordination chemistry. Journal of Materials Chemistry A, 2020, 8, 22674-22685.	10.3	5
21	Electronic Structure Modeling of Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8641-8715.	47.7	149
22	Frontispiece: Use of Dithiasuccinoyl aged Amines Enables COS/H ₂ S Release Lacking Electrophilic Byproducts. Chemistry - A European Journal, 2020, 26, .	3.3	1
23	Rapid Electrochemical Methane Functionalization Involves Pd–Pd Bonded Intermediates. Journal of the American Chemical Society, 2020, 142, 20631-20639.	13.7	21
24	Using natureâ $€$ ™s blueprint to expand catalysis with Earth-abundant metals. Science, 2020, 369, .	12.6	306
25	A Type I Heterointerface between Amorphous PbI ₂ Overlayers on Crystalline CsPbI ₃ . ACS Applied Energy Materials, 2020, 3, 10328-10332.	5.1	4
26	Soft Mode Metal-Linker Dynamics in Carboxylate MOFs Evidenced by Variable-Temperature Infrared Spectroscopy. Journal of the American Chemical Society, 2020, 142, 19291-19299.	13.7	38
27	Influence of Nanoarchitecture on Charge Donation and the Electrical-Transport Properties in [(SnSe) _{1+δ}][TiSe ₂] _{<i>q</i>} Heterostructures. Chemistry of Materials, 2020, 32, 5802-5813.	6.7	6
28	Use of Dithiasuccinoyl aged Amines Enables COS/H ₂ S Release Lacking Electrophilic Byproducts. Chemistry - A European Journal, 2020, 26, 5374-5380.	3.3	16
29	Systematically Improving Espresso: Insights from Mathematical Modeling and Experiment. Matter, 2020, 2, 631-648.	10.0	25
30	Time-Resolved <i>in Situ</i> Polymorphic Transformation from One 12-Connected Zr-MOF to Another. , 2020, 2, 499-504.		16
31	Coffee chemistry: Not your average joe. Science, 2019, 365, 553-553.	12.6	0
32	Record-Setting Sorbents for Reversible Water Uptake by Systematic Anion Exchanges in Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 13858-13866.	13.7	118
33	Metal-free perovskites for non linear optical materials. Chemical Science, 2019, 10, 8187-8194.	7.4	46
34	Nucleolar Stress Induction by Oxaliplatin and Derivatives. Journal of the American Chemical Society, 2019, 141, 18411-18415.	13.7	43
35	Titanium(IV) Inclusion as a Versatile Route to Photoactivity in Metal–Organic Frameworks. Advanced Theory and Simulations, 2019, 2, 1900126.	2.8	14
36	Monofunctional platinum(II) compounds and nucleolar stress: is phenanthriplatin unique?. Journal of Biological Inorganic Chemistry, 2019, 24, 899-908.	2.6	15

Christopher H Hendon

#	Article	IF	CITATIONS
37	Porous Crystals Provide Potable Water from Air. ACS Central Science, 2019, 5, 1639-1641.	11.3	7
38	Chemiresistive Sensing of Ambient CO ₂ by an Autogenously Hydrated Cu ₃ (hexaiminobenzene) ₂ Framework. ACS Central Science, 2019, 5, 1425-1431.	11.3	79
39	<i>Quo vadis niobium</i> ? Divergent coordination behavior of early-transition metals towards MOF-5. Chemical Science, 2019, 10, 5906-5910.	7.4	15
40	An unprecedented {Ni ₁₄ SiW ₉ } hybrid polyoxometalate with high photocatalytic hydrogen evolution activity. Chemical Communications, 2019, 55, 4166-4169.	4.1	51
41	Pressure-induced metallicity and piezoreductive transition of metal-centres in conductive 2-dimensional metal–organic frameworks. Physical Chemistry Chemical Physics, 2019, 21, 25773-25778.	2.8	13
42	Single Crystals of Electrically Conductive Two-Dimensional Metal–Organic Frameworks: Structural and Electrical Transport Properties. ACS Central Science, 2019, 5, 1959-1964.	11.3	211
43	Dithioesters: simple, tunable, cysteine-selective H ₂ S donors. Chemical Science, 2019, 10, 1773-1779.	7.4	35
44	A molecular cross-linking approach for hybrid metal oxides. Nature Materials, 2018, 17, 341-348.	27.5	90
45	Electronic implications of organic nitrogen lone pairs in lead iodide perovskites. Journal of Materials Chemistry C, 2018, 6, 4765-4768.	5.5	1
46	Selective Vapor Pressure Dependent Proton Transport in a Metal–Organic Framework with Two Distinct Hydrophilic Pores. Journal of the American Chemical Society, 2018, 140, 2016-2019.	13.7	64
47	Cyclopropenium (C ₃ H ₃) ⁺ as an Aromatic Alternative A-Site Cation for Hybrid Halide Perovskite Architectures. Journal of Physical Chemistry C, 2018, 122, 2041-2045.	3.1	12
48	A Structural Mimic of Carbonic Anhydrase in a Metal-Organic Framework. CheM, 2018, 4, 2894-2901.	11.7	91
49	Discovery of Cu 3 Pb. Angewandte Chemie, 2018, 130, 12991-12995.	2.0	3
50	Discovery of Cu 3 Pb. Angewandte Chemie - International Edition, 2018, 57, 12809-12813.	13.8	7
51	Tunable Mixed-Valence Doping toward Record Electrical Conductivity in a Three-Dimensional Metal–Organic Framework. Journal of the American Chemical Society, 2018, 140, 7411-7414.	13.7	204
52	Coordination-induced reversible electrical conductivity variation in the MOF-74 analogue Fe ₂ (DSBDC). Dalton Transactions, 2018, 47, 11739-11743.	3.3	27
53	The impact of solvent relative permittivity on the dimerisation of organic molecules well below their solubility limits: examples from brewed coffee and beyond. Food and Function, 2017, 8, 1037-1042.	4.6	1
54	The Organic Secondary Building Unit: Strong Intermolecular π Interactions Define Topology in MIT-25, a Mesoporous MOF with Proton-Replete Channels. Journal of the American Chemical Society, 2017, 139, 3619-3622.	13.7	72

CHRISTOPHER H HENDON

#	Article	IF	CITATIONS
55	Is iron unique in promoting electrical conductivity in MOFs?. Chemical Science, 2017, 8, 4450-4457.	7.4	176
56	Selective Dimerization of Propylene with Ni-MFU-4 <i>l</i> . Organometallics, 2017, 36, 1681-1683.	2.3	55
57	Designing porous electronic thin-film devices: band offsets and heteroepitaxy. Faraday Discussions, 2017, 201, 207-219.	3.2	36
58	Grand Challenges and Future Opportunities for Metal–Organic Frameworks. ACS Central Science, 2017, 3, 554-563.	11.3	311
59	Electroactive Nanoporous Metal Oxides and Chalcogenides by Chemical Design. Chemistry of Materials, 2017, 29, 3663-3670.	6.7	8
60	Reversible Capture and Release of Cl ₂ and Br ₂ with a Redox-Active Metal–Organic Framework. Journal of the American Chemical Society, 2017, 139, 5992-5997.	13.7	95
61	Mechanism of Single-Site Molecule-Like Catalytic Ethylene Dimerization in Ni-MFU-4 <i>l</i> . Journal of the American Chemical Society, 2017, 139, 757-762.	13.7	122
62	Revisiting the Incorporation of Ti(IV) in UiO-type Metal–Organic Frameworks: Metal Exchange versus Grafting and Their Implications on Photocatalysis. Chemistry of Materials, 2017, 29, 8963-8967.	6.7	64
63	Signature of Metallic Behavior in the Metal–Organic Frameworks M ₃ (hexaiminobenzene) ₂ (M = Ni, Cu). Journal of the American Chemical Society, 2017, 139, 13608-13611.	13.7	324
64	Electronic structure design for nanoporous, electrically conductive zeolitic imidazolate frameworks. Journal of Materials Chemistry C, 2017, 5, 7726-7731.	5.5	40
65	Highly Stereoselective Heterogeneous Diene Polymerization by Co-MFU-41: A Single-Site Catalyst Prepared by Cation Exchange. Journal of the American Chemical Society, 2017, 139, 12664-12669.	13.7	63
66	Surface Restructuring of Nickel Sulfide Generates Optimally Coordinated Active Sites for Oxygen Reduction Catalysis. Joule, 2017, 1, 600-612.	24.0	89
67	Magnetic coupling in a hybrid Mn(<scp>ii</scp>) acetylene dicarboxylate. Physical Chemistry Chemical Physics, 2016, 18, 33329-33334.	2.8	4
68	Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science, 2016, 352, 974-978.	12.6	495
69	Polymorphism of the azobenzene dye compound methyl yellow. CrystEngComm, 2016, 18, 3456-3461.	2.6	8
70	Tracking a Common Surface-Bound Intermediate during CO ₂ -to-Fuels Catalysis. ACS Central Science, 2016, 2, 522-528.	11.3	227
71	Chemical principles for electroactive metal–organic frameworks. MRS Bulletin, 2016, 41, 870-876.	3.5	42
72	Realistic Surface Descriptions of Heterometallic Interfaces: The Case of TiWC Coated in Noble Metals. Journal of Physical Chemistry Letters, 2016, 7, 4475-4482.	4.6	24

#	Article	IF	CITATIONS
73	Electronic origins of photocatalytic activity in d0 metal organic frameworks. Scientific Reports, 2016, 6, 23676.	3.3	196
74	One-dimensional Magnus-type platinum double salts. Nature Communications, 2016, 7, 11950.	12.8	34
75	The effect of bean origin and temperature on grinding roasted coffee. Scientific Reports, 2016, 6, 24483.	3.3	31
76	Frontier Orbital Engineering of Metal–Organic Frameworks with Extended Inorganic Connectivity: Porous Alkaline-Earth Oxides. Inorganic Chemistry, 2016, 55, 7265-7269.	4.0	13
77	Lone-Pair Stabilization in Transparent Amorphous Tin Oxides: A Potential Route to p-Type Conduction Pathways. Chemistry of Materials, 2016, 28, 4706-4713.	6.7	33
78	A Simple and Nonâ€Destructive Method for Assessing the Incorporation of Bipyridine Dicarboxylates as Linkers within Metal–Organic Frameworks. Chemistry - A European Journal, 2016, 22, 3713-3718.	3.3	28
79	Catalytic Amine Oxidation under Ambient Aerobic Conditions: Mimicry of Monoamine Oxidaseâ€B. Angewandte Chemie - International Edition, 2015, 54, 8997-9000.	13.8	54
80	Crystal structure optimisation using an auxiliary equation of state. Journal of Chemical Physics, 2015, 143, 184101.	3.0	21
81	Cation-Dependent Intrinsic Electrical Conductivity in Isostructural Tetrathiafulvalene-Based Microporous Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 1774-1777.	13.7	360
82	Nanocrystals of Cesium Lead Halide Perovskites (CsPbX ₃ , X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters, 2015, 15, 3692-3696.	9.1	6,814
83	Photocatalytic Carbon Dioxide Reduction with Rhodiumâ€based Catalysts in Solution and Heterogenized within Metal–Organic Frameworks. ChemSusChem, 2015, 8, 603-608.	6.8	177
84	Modular design of SPIRO-OMeTAD analogues as hole transport materials in solar cells. Chemical Communications, 2015, 51, 8935-8938.	4.1	64
85	Million-Fold Electrical Conductivity Enhancement in Fe ₂ (DEBDC) versus Mn ₂ (DEBDC) (E = S, O). Journal of the American Chemical Society, 2015, 137, 6164-6167.	13.7	291
86	Absorbate-Induced Piezochromism in a Porous Molecular Crystal. Nano Letters, 2015, 15, 2149-2154.	9.1	36
87	Chemical principles underpinning the performance of the metal–organic framework HKUST-1. Chemical Science, 2015, 6, 3674-3683.	7.4	144
88	Role of entropic effects in controlling the polymorphism in formate ABX ₃ metal–organic frameworks. Chemical Communications, 2015, 51, 15538-15541.	4.1	66
89	Assessment of polyanion (BF ₄ ^{â^'} and PF ₆ ^{â^'}) substitutions in hybrid halide perovskites. Journal of Materials Chemistry A, 2015, 3, 9067-9070.	10.3	108
90	Electronic Structure Modulation of Metal–Organic Frameworks for Hybrid Devices. ACS Applied Materials & Interfaces, 2014, 6, 22044-22050.	8.0	75

Christopher H Hendon

#	Article	IF	CITATIONS
91	Electronic Chemical Potentials of Porous Metal–Organic Frameworks. Journal of the American Chemical Society, 2014, 136, 2703-2706.	13.7	262
92	Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells. Nano Letters, 2014, 14, 2584-2590.	9.1	2,068
93	The Role of Dissolved Cations in Coffee Extraction. Journal of Agricultural and Food Chemistry, 2014, 62, 4947-4950.	5.2	33
94	Three-electron two-centred bonds and the stabilisation of cationic sulfur radicals. Chemical Science, 2014, 5, 1390-1395.	7.4	41
95	Ligand design for long-range magnetic order in metal–organic frameworks. Chemical Communications, 2014, 50, 13990-13993.	4.1	52
96	Engineering the Optical Response of the Titanium-MIL-125 Metal–Organic Framework through Ligand Functionalization. Journal of the American Chemical Society, 2013, 135, 10942-10945.	13.7	701
97	Helical frontier orbitals of conjugated linear molecules. Chemical Science, 2013, 4, 4278.	7.4	72
98	Thermodynamic and electronic properties of tunable II–VI and IV–VI semiconductor based metal–organic frameworks from computational chemistry. Journal of Materials Chemistry C, 2013, 1, 95-100.	5.5	23
99	Conductive metal–organic frameworks and networks: fact or fantasy?. Physical Chemistry Chemical Physics, 2012, 14, 13120.	2.8	258