
Keita Fuchise

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5808646/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Precise synthesis of α,ï‰-chain-end-functionalized poly(dimethylsiloxane) with bromoaryl groups for incorporation in naphthalene-diimide-based N-type semiconducting polymers. Polymer, 2022, 252, 124934.	3.8	7
2	Precise synthesis of linear polysiloxanes with a polar side-chain structure by organocatalytic controlled/living ring-opening polymerization of (3-cyanopropyl)pentamethylcyclotrisiloxane. Polymer Chemistry, 2021, 12, 3321-3331.	3.9	7
3	Organocatalytic controlled/living ring-opening polymerization of 1,3,5-triphenyl-1,3,5-tri- <i>p</i> -tolylcyclotrisiloxane for the precise synthesis of fusible, soluble, functionalized, and solid poly[phenyl(<i>p</i> -tolyl)siloxane]s. Polymer Chemistry, 2021, 12, 5178-5190.	3.9	5
4	Precise Synthesis of Side-Chain-Functionalized Linear Polysiloxanes by Organocatalytic Ring-Opening Polymerization of Monofunctional Cyclotrisiloxanes. Macromolecules, 2021, 54, 5204-5217.	4.8	14
5	Precise Synthesis of Linear Polysiloxanes End-Functionalized with Alkynylsilyl Groups by Organocatalytic Ring-Opening Polymerization of Cyclotrisiloxanes. Macromolecules, 2021, 54, 5765-5773.	4.8	9
6	Precise synthesis of α,ï‰-chain-end functionalized poly(dimethylsiloxane) with azide groups based on metal-free ring-opening polymerization and a quantitative azidation reaction. Reactive and Functional Polymers, 2021, 166, 105009.	4.1	6
7	Well-defined hydrogen and organofunctional polysiloxanes with spiro-fused siloxane backbones. Polymer Chemistry, 2021, 12, 2222-2227.	3.9	5
8	Organocatalytic ring-opening polymerization of cyclotrisiloxanes using silanols as initiators for the precise synthesis of asymmetric linear polysiloxanes. Polymer Chemistry, 2020, 11, 7625-7636.	3.9	12
9	A catalyst- and additive-free synthesis of alkoxyhydrosiloxanes from silanols and alkoxyhydrosilanes. Chemical Communications, 2020, 56, 8218-8221.	4.1	7
10	Organocatalytic controlled/living ring-opening polymerization of cyclotrisiloxanes initiated by water with strong organic base catalysts. Chemical Science, 2018, 9, 2879-2891.	7.4	55
11	A Photolithographic Approach to Spatially Resolved Cross-Linked Nanolayers. Langmuir, 2015, 31, 3242-3253.	3.5	5
12	Group Transfer Polymerization of Acrylic Monomers. , 2015, , 451-494.		2
13	B(C ₆ F ₅) ₃ -Catalyzed Group Transfer Polymerization of <i>n</i> -Butyl Acrylate with Hydrosilane through In Situ Formation of Initiator by 1,4-Hydrosilylation of <i>n</i> -Butyl Acrylate. ACS Macro Letters, 2014, 3, 1015-1019.	4.8	24
14	Thermoresponsive properties of 3-, 4-, 6-, and 12-armed star-shaped poly[2-(dimethylamino)ethyl methacrylate]s prepared by core-first group transfer polymerization. Polymer Chemistry, 2014, 5, 4701-4709.	3.9	32
15	Synthesis of α-, ω-, and α,ω-End-Functionalized Poly(<i>n</i> -butyl acrylate)s by Organocatalytic Group Transfer Polymerization Using Functional Initiator and Terminator. Macromolecules, 2014, 47, 5514-5525.	4.8	35
16	Design and Precise Synthesis of Thermoresponsive Polyacrylamides. Springer Theses, 2014, , .	0.1	2
17	Control of Thermoresponsive Properties of Urea End-Functionalized Poly(N-isopropylacrylamide) Based on the Hydrogen Bond Assisted Self-Assembly in Water. Springer Theses, 2014, , 27-43.	0.1	0
18	Facile Synthesis of Thermoresponsive Block Copolymers Bearing Poly(N,N-diethylacrylamide) Segment Through Group Transfer Polymerization. Springer Theses, 2014, , 61-77.	0.1	0

Keita Fuchise

#	Article	IF	CITATIONS
19	Precise Synthesis of Poly(N,N-Dimethylacrylamide) by Group Transfer Polymerization Using a Strong BrÃ,nsted Acid and an Amino Silyl Enolate. Springer Theses, 2014, , 45-60.	0.1	0
20	Recent progress in organocatalytic group transfer polymerization. Polymer Chemistry, 2013, 4, 4278.	3.9	100
21	Synthesis of syndiotacticâ€rich starâ€shaped poly(methyl methacrylate) by coreâ€first group transfer polymerization using <i>N</i> â€(trimethylsilyl)bis(trifluoromethanesulfonyl)imide. Journal of Polymer Science Part A, 2012, 50, 3277-3285.	2.3	21
22	Controlled polymerization of methyl acrylate for highâ€molecularâ€weight polymers by pentafluorophenylbis(triflyl)methaneâ€promoted group transfer polymerization using triisopropylsilyl ketene acetal. Journal of Polymer Science Part A, 2012, 50, 3560-3566.	2.3	35
23	Precise Synthesis of Clickable Poly(<i>n</i> -hexyl isocyanate). Macromolecules, 2012, 45, 3677-3686.	4.8	22
24	Effect of Counter Anions on Kinetics and Stereoregularity for the Strong BrÃ,nsted Acidâ€Promoted Group Transfer Polymerization of <i>N</i> , <i>N</i> â€Đimethylacrylamide. Macromolecular Chemistry and Physics, 2012, 213, 1604-1611.	2.2	19
25	Organic Superbase as an Efficient Catalyst for Group Transfer Polymerization of Methyl Methacrylate. Macromolecules, 2011, 44, 4641-4647.	4.8	73
26	Core-First Synthesis of Three-, Four-, and Six-Armed Star-Shaped Poly(methyl methacrylate)s by Group Transfer Polymerization Using Phosphazene Base. Macromolecules, 2011, 44, 9091-9098.	4.8	65
27	Precise synthesis of poly(1-adamantyl methacrylate) by atom transfer radical polymerization. Polymer Journal, 2010, 42, 626-631.	2.7	20
28	Controlled/Living Ring-Opening Polymerization of δ-Valerolactone Using Triflylimide as an Efficient Cationic Organocatalyst. Macromolecules, 2010, 43, 7090-7094.	4.8	81
29	Thermoresponsive Vesicular Morphologies Obtained by Self-Assemblies of Hybrid Oligosaccharide- <i>block</i> -poly(<i>N</i> -isopropylacrylamide) Copolymer Systems. Langmuir, 2010, 26, 2325-2332.	3.5	88
30	Group Transfer Polymerization of N,N-Dimethylacrylamide Using Nobel Efficient System Consisting of Dialkylamino Silyl Enol Ether as an Initiator and Strong BrÃ,nsted Acid as an Organocatalyst. Macromolecules, 2010, 43, 5589-5594.	4.8	49
31	Poly(<i>N</i> â€hydroxyethylacrylamide) Prepared by Atom Transfer Radical Polymerization as a Nonionic, Waterâ€Soluble, and Hydrolysisâ€Resistant Polymer and/or Segment of Block Copolymer with a Wellâ€Defined Molecular Weight. Macromolecular Chemistry and Physics, 2009, 210, 349-358.	2.2	34
32	Aggregation Behavior of Poly(<i>N</i> â€isopropylacrylamide) Semitelechelics with a Perfluoroalkyl Segment in Water ^a . Macromolecular Chemistry and Physics, 2009, 210, 2138-2147.	2.2	8
33	Structural effect of a series of block copolymers consisting of poly(N-isopropylacrylamide) and poly(N-hydroxyethylacrylamide) on thermoresponsive behavior. Reactive and Functional Polymers, 2009, 69, 463-469.	4.1	25
34	Control of thermoresponsive property of urea endâ€functionalized poly(<i>N</i> â€isopropylacrylamide) based on the hydrogen bondâ€assisted selfâ€assembly in water. Journal of Polymer Science Part A, 2009, 47, 6259-6268.	2.3	20
35	Strong BrÃ,nsted Acid as a Highly Efficient Promoter for Group Transfer Polymerization of Methyl Methacrylate. Macromolecules, 2009, 42, 8747-8750.	4.8	65
36	Synthesis, thermomorphic characteristics, and fluorescent properties of poly[2,7-(9,9-dihexylfluorene)]-block-poly(N-isopropylacrylamide)-block-poly(N-hydroxyethylacrylamide) rod-coil-coil triblock copolymers. Soft Matter, 2009, 5, 3761.	2.7	55

#	Article	IF	CITATIONS
37	A Versatile Method for Adjusting Thermoresponsivity: Synthesis and â€ [~] Click' Reaction of an Azido Endâ€Functionalized Poly(<i>Nâ€</i> isopropylacrylamide). Macromolecular Rapid Communications, 2008, 29, 1126-1133.	3.9	72