Demetris Yannopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5808508/publications.pdf

Version: 2024-02-01

71102 49909 8,049 137 41 87 citations h-index g-index papers 138 138 138 5646 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Concomitant Respiratory Failure Can Impair Myocardial Oxygenation in Patients with Acute Cardiogenic Shock Supported by VA-ECMO. Journal of Cardiovascular Translational Research, 2022, 15, 217-226.	2.4	15
2	Coronary artery disease burden relation with the presentation of acute cardiac events and ventricular fibrillation. Catheterization and Cardiovascular Interventions, 2022, 99, 804-811.	1.7	8
3	Extracorporeal cardiopulmonary resuscitation in adults: evidence and implications. Intensive Care Medicine, 2022, 48, 1-15.	8.2	114
4	The Tool Is Only as Good as the Person Who Wields It. JACC: Cardiovascular Interventions, 2022, 15, 248-250.	2.9	2
5	Bayesian analysis of amiodarone or lidocaine versus placebo for out-of-hospital cardiac arrest. Heart, 2022, , heartjnl-2021-320513.	2.9	5
6	Differential Effects of Reperfusion on Cardiac Mitochondrial Subpopulations in a Preclinical Porcine Model of Acute Myocardial Infarction. Frontiers in Cell and Developmental Biology, 2022, 10, 843733.	3.7	2
7	A retrospective study on the trends in surgical aortic valve replacement outcomes in the postâ€transcatheter aortic valve replacement era. Health Science Reports, 2022, 5, .	1.5	2
8	Patients treated with venoarterial extracorporeal membrane oxygenation have different baseline risk and outcomes dependent on indication and route of cannulation. Hellenic Journal of Cardiology, 2021, 62, 38-45.	1.0	5
9	Enhancing cardiac arrest survival with extracorporeal cardiopulmonary resuscitation: insights into the process of death. Annals of the New York Academy of Sciences, 2021, , .	3.8	5
10	Extracorporeal Cardiopulmonary Resuscitation in Adults. Interim Guideline Consensus Statement From the Extracorporeal Life Support Organization. ASAIO Journal, 2021, 67, 221-228.	1.6	194
11	Overview of Veno-Arterial Extracorporeal Membrane Oxygenation (VA-ECMO) Support for the Management of Cardiogenic Shock. Frontiers in Cardiovascular Medicine, 2021, 8, 686558.	2.4	55
12	Outcomes associated with delayed enteral feeding after cardiac arrest treated with veno-arterial extracorporeal membrane oxygenation and targeted temperature management. Resuscitation, 2021, 164, 20-26.	3.0	14
13	Refractory cardiac arrest: when timing is crucial – Authors' reply. Lancet, The, 2021, 398, 23-24.	13.7	1
14	ST-Elevation Myocardial Infarction Complicated by Out-of-Hospital Cardiac Arrest. Interventional Cardiology Clinics, 2021, 10, 359-368.	0.4	1
15	Impact of AKI in Patients with Out-of-Hospital Cardiac Arrest Managed with VA ECMO. Kidney360, 2021, 2, 1827-1830.	2.1	2
16	Venoarteriovenous ECMO in Concomitant Acute Respiratory Distress Syndrome and Cardiomyopathy Associated with COVID-19 Infection. Case Reports in Critical Care, 2021, 2021, 1-5.	0.4	3
17	Delaying Electrocardiography in Cardiac Arrest: A Pause for the Cause. JAMA Network Open, 2021, 4, e2033360.	5.9	1
18	Change in out-of-hospital 12-lead ECG diagnostic classification following resuscitation from cardiac arrest. Resuscitation, 2021, 169, 45-52.	3.0	O

#	Article	IF	CITATIONS
19	Improved Survival With Extracorporeal Cardiopulmonary Resuscitation Despite Progressive Metabolic Derangement Associated With Prolonged Resuscitation. Circulation, 2020, 141, 877-886.	1.6	204
20	Rationale and Strategies for Development of an Optimal Bundle of Management for Cardiac Arrest. , 2020, 2, e0214.		7
21	Rationale and methods of the Advanced R2Eperfusion STrategies for Refractory Cardiac Arrest (ARREST) trial. American Heart Journal, 2020, 229, 29-39.	2.7	24
22	Echocardiographic evaluation of cardiac recovery after refractory out-of-hospital cardiac arrest. Resuscitation, 2020, 154, 38-46.	3.0	17
23	The Minnesota mobile extracorporeal cardiopulmonary resuscitation consortium for treatment of out-of-hospital refractory ventricular fibrillation: Program description, performance, and outcomes. EClinicalMedicine, 2020, 29-30, 100632.	7.1	58
24	Closed-loop machine-controlled CPR system optimises haemodynamics during prolonged CPR. Resuscitation Plus, 2020, 3, 100021.	1.7	2
25	Advanced reperfusion strategies for patients with out-of-hospital cardiac arrest and refractory ventricular fibrillation (ARREST): a phase 2, single centre, open-label, randomised controlled trial. Lancet, The, 2020, 396, 1807-1816.	13.7	519
26	Increased QT Dispersion Is Linked to Worse Outcomes in Patients Hospitalized for Outâ€ofâ€Hospital Cardiac Arrest. Journal of the American Heart Association, 2020, 9, e016485.	3.7	8
27	Response by Bartos and Yannopoulos to Letter Regarding Article, "lmproved Survival With Extracorporeal Cardiopulmonary Resuscitation Despite Progressive Metabolic Derangement Associated With Prolonged Resuscitation― Circulation, 2020, 142, e121-e122.	1.6	2
28	Refractory cardiac arrest: where extracorporeal cardiopulmonary resuscitation fits. Current Opinion in Critical Care, 2020, 26, 596-602.	3.2	10
29	Poloxamer 188 Protects Isolated Adult Mouse Cardiomyocytes from Reoxygenation Injury. Pharmacology Research and Perspectives, 2020, 8, e00639.	2.4	10
30	Kounis Syndrome Leading to Cardiac Arrest After Iodinated Contrast Exposure. JACC: Case Reports, 2020, 2, 626-629.	0.6	7
31	Generation of human endothelium in pig embryos deficient in ETV2. Nature Biotechnology, 2020, 38, 297-302.	17.5	74
32	Sodium Nitroprusside–Enhanced Cardiopulmonary Resuscitation Improves Blood Flow by Pulmonary Vasodilation Leading to Higher Oxygen Requirements. JACC Basic To Translational Science, 2020, 5, 183-192.	4.1	5
33	Extracorporeal cardiopulmonary resuscitation for cardiac arrest. Current Opinion in Critical Care, 2020, 26, 228-235.	3.2	29
34	ETV2-null porcine embryos survive to post-implantation following incomplete enucleation. Reproduction, 2020, 159, 539-547.	2.6	3
35	Exposure to glucocorticoids prior to transcatheter aortic valve replacement is associated with reduced incidence of high-degree AV block and pacemaker. Cardiovascular Revascularization Medicine, 2019, 20, 328-331.	0.8	10
36	Optimal Combination of Compression Rate and Depth During Cardiopulmonary Resuscitation for Functionally Favorable Survival. JAMA Cardiology, 2019, 4, 900.	6.1	42

#	Article	IF	CITATIONS
37	Etv2 transcriptionally regulates Yes1 and promotes cell proliferation during embryogenesis. Scientific Reports, 2019, 9, 9736.	3.3	13
38	Cardiac Muscle Membrane Stabilization in Myocardial Reperfusion Injury. JACC Basic To Translational Science, 2019, 4, 275-287.	4.1	24
39	The Evolving Role of the Cardiac Catheterization Laboratory in the Management of Patients With Out-of-Hospital Cardiac Arrest: A Scientific Statement From the American Heart Association. Circulation, 2019, 139, e530-e552.	1.6	154
40	Synchronized Pulsatile Flow With Low Systolic Output From Venoâ€Arterial Extracorporeal Membrane Oxygenation Improves Myocardial Recovery After Experimental Cardiac Arrest in Pigs. Artificial Organs, 2018, 42, 597-604.	1.9	5
41	Identifying Candidates for Advanced Hemodynamic Support After Cardiac Arrest. Circulation, 2018, 137, 283-285.	1.6	2
42	Outcomes of intermediateâ€risk patients treated with transcatheter and surgical aortic valve replacement in the Veterans Affairs Healthcare System: A single center 20â€year experience. Catheterization and Cardiovascular Interventions, 2018, 92, 390-398.	1.7	7
43	Improving cannulation time for extracorporeal life support in refractory cardiac arrest of presumed cardiac cause – Comparison of two percutaneous cannulation techniques in the catheterization laboratory in a center without on-site cardiovascular surgery. Resuscitation, 2018, 122, 69-75.	3.0	23
44	Surviving refractory out-of-hospital ventricular fibrillation cardiac arrest: Critical care and extracorporeal membrane oxygenation management. Resuscitation, 2018, 132, 47-55.	3.0	127
45	Effect Of Membrane Sealing Copolymer Poloxamer188 On Cardiac Mitochondrial Subpopulations In A Porcine Model Of Acute Myocardial Infarction. FASEB Journal, 2018, 32, 717.4.	0.5	0
46	Outcomes of sudden cardiac arrest in a state-wide integrated resuscitation program: Results from the Minnesota Resuscitation Consortium. Resuscitation, 2017, 110, 95-100.	3.0	29
47	Early Effects of Prolonged Cardiac Arrest and Ischemic Postconditioning during Cardiopulmonary Resuscitation on Cardiac and Brain Mitochondrial Function in Pigs. Resuscitation, 2017, 116, 8-15.	3.0	34
48	PEO–PPO Diblock Copolymers Protect Myoblasts from Hypo-Osmotic Stress In Vitro Dependent on Copolymer Size, Composition, and Architecture. Biomacromolecules, 2017, 18, 2090-2101.	5.4	23
49	The future is now: neuroprotection during cardiopulmonary resuscitation. Current Opinion in Critical Care, 2017, 23, 215-222.	3.2	12
50	Coronary Artery Disease in Patients WithÂOut-of-Hospital Refractory Ventricular Fibrillation Cardiac Arrest. Journal of the American College of Cardiology, 2017, 70, 1109-1117.	2.8	249
51	Long-Term Prognostic Value of Gasping During Out-of-Hospital CardiacÂArrest. Journal of the American College of Cardiology, 2017, 70, 1467-1476.	2.8	40
52	Role of Epinephrine and Extracorporeal Membrane Oxygenation in the Management of Ischemic Refractory Ventricular Fibrillation. JACC Basic To Translational Science, 2017, 2, 244-253.	4.1	15
53	Minnesota Heart Safe Communities: Are community-based initiatives increasing pre-ambulance CPR and AED use?. Resuscitation, 2017, 119, 33-36.	3.0	24
54	Sodium nitroprusside enhanced cardiopulmonary resuscitation improves short term survival in a porcine model of ischemic refractory ventricular fibrillation. Resuscitation, 2017, 110, 6-11.	3.0	15

#	Article	IF	Citations
55	The interventional cardiologist as a resuscitator: a new era of machines in the cardiac catheterization laboratory. Hellenic Journal of Cardiology, 2017, 58, 401-402.	1.0	4
56	The Physiology of Cardiopulmonary Resuscitation. Anesthesia and Analgesia, 2016, 122, 767-783.	2.2	105
57	Intracoronary Poloxamer 188 Prevents Reperfusion Injury in a Porcine Model ofÂST-Segment Elevation MyocardialÂInfarction. JACC Basic To Translational Science, 2016, 1, 224-234.	4.1	32
58	Reperfusion injury protection during Basic Life Support improves circulation and survival outcomes in a porcine model of prolonged cardiac arrest. Resuscitation, 2016, 105, 29-35.	3.0	8
59	Minnesota Resuscitation Consortium's Advanced Perfusion and Reperfusion Cardiac Life Support Strategy for Outâ€ofâ€Hospital Refractory Ventricular Fibrillation. Journal of the American Heart Association, 2016, 5, .	3.7	177
60	Impedance Threshold Device Combined With High-Quality Cardiopulmonary Resuscitation Improves Survival With Favorable Neurological Function After Witnessed Out-of-Hospital Cardiac Arrest. Circulation Journal, 2016, 80, 2124-2132.	1.6	23
61	Early Access to the Cardiac Catheterization Laboratory for Patients Resuscitated From Cardiac Arrest Due to a Shockable Rhythm: The Minnesota Resuscitation Consortium Twin Cities Unified Protocol. Journal of the American Heart Association, 2016, 5, .	3.7	77
62	The Effect of Head Up Cardiopulmonary Resuscitation on Cerebral and Systemic Hemodynamics. Resuscitation, 2016, 102, 29-34.	3.0	47
63	Effect of regulating airway pressure on intrathoracic pressure and vital organ perfusion pressure during cardiopulmonary resuscitation: a non-randomized interventional cross-over study. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 2015, 23, 83.	2.6	22
64	Complete Versus Incomplete Coronary Revascularization of Patients With Multivessel Coronary Artery Disease. Current Treatment Options in Cardiovascular Medicine, 2015, 17, 366.	0.9	21
65	Enhanced Perfusion During Advanced Life Support Improves Survival With Favorable Neurologic Function in a Porcine Model of Refractory Cardiac Arrest. Critical Care Medicine, 2015, 43, 1087-1095.	0.9	12
66	Quality of CPR: An important effect modifier in cardiac arrest clinical outcomes and intervention effectiveness trials. Resuscitation, 2015, 94, 106-113.	3.0	65
67	Sodium Nitroprusside–Enhanced Cardiopulmonary Resuscitation Facilitates Intra-Arrest Therapeutic Hypothermia in a Porcine Model of Prolonged Ventricular Fibrillation*. Critical Care Medicine, 2015, 43, 849-855.	0.9	9
68	Part 7: Adult Advanced Cardiovascular Life Support. Circulation, 2015, 132, S444-64.	1.6	1,009
69	Tilting for perfusion: Head-up position during cardiopulmonary resuscitation improves brain flow in a porcine model of cardiac arrest. Resuscitation, 2015, 87, 38-43.	3.0	52
70	Bundled postconditioning therapies improve hemodynamics and neurologic recovery after 17min of untreated cardiac arrest. Resuscitation, 2015, 87, 7-13.	3.0	33
71	Optimizing Neurologically Intact Survival from Sudden Cardiac Arrest: A Call to Action. Western Journal of Emergency Medicine, 2014, 15, 803-807.	1.1	1
72	Favourable 5-year postdischarge survival of comatose patients resuscitated from out-of-hospital cardiac arrest, managed with immediate coronary angiogram on admission. European Heart Journal: Acute Cardiovascular Care, 2014, 3, 183-191.	1.0	32

#	Article	IF	CITATIONS
73	Post-conditioning to improve cardiopulmonary resuscitation. Current Opinion in Critical Care, 2014, 20, 242-249.	3.2	12
74	Awakening after cardiac arrest and post resuscitation hypothermia: Are we pulling the plug too early? Resuscitation, 2014, 85, 211-214.	3.0	114
75	Hemodynamic improvement of a LUCAS 2 automated device by addition of an impedance threshold device in a pig model of cardiac arrest. Resuscitation, 2014, 85, 1704-1707.	3.0	11
76	Anaesthetic Postconditioning at the Initiation of CPR Improves Myocardial and Mitochondrial Function in a Pig Model of Prolonged Untreated Ventricular Fibrillation. Resuscitation, 2014, 85, 1745-1751.	3.0	20
77	Early coronary revascularization improves 24h survival and neurological function after ischemic cardiac arrest. A randomized animal study. Resuscitation, 2014, 85, 292-298.	3.0	13
78	Outcomes After Complete Versus IncompleteÂRevascularization of Patients With Multivessel Coronary Artery Disease. Journal of the American College of Cardiology, 2013, 62, 1421-1431.	2.8	346
79	Multistate implementation of guideline-based cardiac resuscitation systems of care: Description of the HeartRescue Project. American Heart Journal, 2013, 166, 647-653.e2.	2.7	40
80	Intrathoracic pressure regulation during cardiopulmonary resuscitation: A feasibility case-series. Resuscitation, 2013, 84, 450-453.	3.0	14
81	Ischemic post-conditioning and vasodilator therapy during standard cardiopulmonary resuscitation to reduce cardiac and brain injury after prolonged untreated ventricular fibrillation. Resuscitation, 2013, 84, 1143-1149.	3.0	29
82	Treatment of non-traumatic out-of-hospital cardiac arrest with active compression decompression cardiopulmonary resuscitation plus an impedance threshold device. Resuscitation, 2013, 84, 1214-1222.	3.0	51
83	Novelties in pharmacological management of cardiopulmonary resuscitation. Current Opinion in Critical Care, 2013, 19, 417-423.	3.2	3
84	Impact of Percutaneous Coronary Intervention Performance Reporting on Cardiac Resuscitation Centers. Circulation, 2013, 128, 762-773.	1.6	83
85	Improved cerebral perfusion pressures and 24-hr neurological survival in a porcine model of cardiac arrest with active compression-decompression cardiopulmonary resuscitation and augmentation of negative intrathoracic pressure*. Critical Care Medicine, 2012, 40, 1851-1856.	0.9	48
86	Is intrathoracic pressure regulation at the threshold of new resuscitation science?*. Critical Care Medicine, 2012, 40, 1008-1009.	0.9	0
87	Controlled pauses at the initiation of sodium nitroprusside-enhanced cardiopulmonary resuscitation facilitate neurological and cardiac recovery after 15 mins of untreated ventricular fibrillation. Critical Care Medicine, 2012, 40, 1562-1569.	0.9	12
88	Ischemic postconditioning at the initiation of cardiopulmonary resuscitation facilitates functional cardiac and cerebral recovery after prolonged untreated ventricular fibrillation. Resuscitation, 2012, 83, 1397-1403.	3.0	39
89	Sodium nitroprusside enhanced cardiopulmonary resuscitation (SNPeCPR) improves vital organ perfusion pressures and carotid blood flow in a porcine model of cardiac arrest. Resuscitation, 2012, 83, 374-377.	3.0	16
90	Improving ROSC with high dose of epinephrine. Are we really?. Resuscitation, 2012, 83, e71.	3.0	0

#	Article	IF	Citations
91	Advances in Cardiopulmonary Resuscitation. Heart Failure Clinics, 2011, 7, 251-268.	2.1	O
92	During CPR, push hard and fast and please do not stop!. Resuscitation, 2011, 82, 1475-1476.	3.0	7
93	Improving microcirculation with therapeutic intrathoracic pressure regulation in a porcine model of hemorrhage. Resuscitation, 2011, 82, S16-S22.	3.0	6
94	Sodium nitroprusside enhanced cardiopulmonary resuscitation prevents post-resuscitation left ventricular dysfunction and improves 24-hour survival and neurological function in a porcine model of prolonged untreated ventricular fibrillation. Resuscitation, 2011, 82, S35-S40.	3.0	12
95	Standard cardiopulmonary resuscitation versus active compression-decompression cardiopulmonary resuscitation with augmentation of negative intrathoracic pressure for out-of-hospital cardiac arrest: a randomised trial. Lancet, The, 2011, 377, 301-311.	13.7	240
96	Milestones in treatment: the tipping point and the ResQ Trial. Lancet, The, 2011, 377, 2081-2082.	13.7	0
97	Sodium nitroprusside enhanced cardiopulmonary resuscitation improves survival with good neurological function in a porcine model of prolonged cardiac arrest*. Critical Care Medicine, 2011, 39, 1269-1274.	0.9	68
98	Sodium nitroprusside-enhanced cardiopulmonary resuscitation improves resuscitation rates after prolonged untreated cardiac arrest in two porcine models*. Critical Care Medicine, 2011, 39, 2705-2710.	0.9	34
99	Take Heart America: A comprehensive, community-wide, systems-based approach to the treatment of cardiac arrest*. Critical Care Medicine, 2011, 39, 26-33.	0.9	133
100	A new standard dual-device method for CPR: the evolution of a new model of physiological synergy to improve patient care. Future Cardiology, 2011, 7, 451-454.	1.2	0
101	Intrathoracic Pressure Regulation Improves 24-Hour Survival in a Pediatric Porcine Model of Hemorrhagic Shock. Pediatric Research, 2011, 70, 267-271.	2.3	5
102	Optimizing the Respiratory Pump: Harnessing Inspiratory Resistance to Treat Systemic Hypotension. Respiratory Care, 2011, 56, 846-857.	1.6	56
103	An animal model unrelated to the real world. Critical Care Medicine, 2010, 38, 1503-1504.	0.9	0
104	No assisted ventilation cardiopulmonary resuscitation and 24-hour neurological outcomes in a porcine model of cardiac arrest. Critical Care Medicine, 2010, 38, 254-260.	0.9	80
105	Part 10: Acute Coronary Syndromes. Circulation, 2010, 122, S787-817.	1.6	224
106	Dispatcher-Directed Bystander Initiated Cardiopulmonary Resuscitation. Circulation, 2010, 121, 10-13.	1.6	15
107	Implementing the 2005 American Heart Association Guidelines improves outcomes after out-of-hospital cardiac arrest. Heart Rhythm, 2010, 7, 1357-1362.	0.7	81
108	Intra–Cardiopulmonary Resuscitation Hypothermia With and Without Volume Loading in an Ischemic Model of Cardiac Arrest. Circulation, 2009, 120, 1426-1435.	1.6	123

#	Article	IF	CITATIONS
109	Advances in Cardiopulmonary Resuscitation. Cardiac Electrophysiology Clinics, 2009, 1, 13-31.	1.7	О
110	A Resuscitation of Bretylium?. American Journal of Therapeutics, 2009, 16, 480-481.	0.9	1
111	From laboratory science to six emergency medical services systems: New understanding of the physiology of cardiopulmonary resuscitation increases survival rates after cardiac arrest. Critical Care Medicine, 2008, 36, S397-S404.	0.9	29
112	Mechanical Devices to Improve Circulation During Cardiopulmonary Resuscitation., 2008,, 809-818.		0
113	Abstract P22: An Impedance Threshold Device Combined with an Automated Active Compression Decompression CPR Device (LUCAS) Improves the Chances For Survival in Pigs in Cardiac Arrest. Circulation, 2008, 118, .	1.6	2
114	Comparison of a 10-breaths-per-minute versus a 2-breaths-per-minute strategy during cardiopulmonary resuscitation in a porcine model of cardiac arrest. Respiratory Care, 2008, 53, 862-70.	1.6	39
115	Intrathoracic Pressure Regulation Improves 24-Hour Survival in a Porcine Model of Hypovolemic Shock. Anesthesia and Analgesia, 2007, 104, 157-162.	2.2	36
116	Acute management of sudden cardiac death in adults based upon the new CPR guidelines. Europace, 2007, 9, 2-9.	1.7	13
117	Cardiac Arrest, Mild Therapeutic Hypothermia, and Unanticipated Cerebral Recovery. Neurologist, 2007, 13, 369-375.	0.7	27
118	Reduced Atrial Tachyarrhythmia Susceptibility After Upgrade of Conventional Implanted Pulse Generator to Cardiac Resynchronization Therapy in Patients With Heart Failure. Journal of the American College of Cardiology, 2007, 50, 1246-1251.	2.8	38
119	Use of the Impedance Threshold Device (ITD). Resuscitation, 2007, 75, 192-193.	3.0	4
120	Subacute gastric perforation caused by a left ventricular assist device. World Journal of Gastroenterology, 2007, 13, 3253.	3.3	10
121	Rapid Induction of Cerebral Hypothermia Is Enhanced With Active Compression-Decompression Plus Inspiratory Impedance Threshold Device Cardiopulmonary Resusitation in a Porcine Model of Cardiac Arrest. Journal of the American College of Cardiology, 2006, 47, 835-841.	2.8	23
122	Intrathoracic pressure regulation for intracranial pressure management in normovolemic and hypovolemic pigs. Critical Care Medicine, 2006, 34, S495-S500.	0.9	47
123	Spontaneous gasping decreases intracranial pressure and improves cerebral perfusion in a pig model of ventricular fibrillation. Resuscitation, 2006, 69, 329-334.	3.0	40
124	Hemodynamic and respiratory effects of negative tracheal pressure during CPR in pigs. Resuscitation, 2006, 69, 487-494.	3.0	37
125	A dose–response curve for the negative bias pressure of an intrathoracic pressure regulator during CPR. Resuscitation, 2006, 71, 365-368.	3.0	8
126	Intrathoracic pressure regulation improves vital organ perfusion pressures in normovolemic and hypovolemic pigs. Resuscitation, 2006, 70, 445-453.	3.0	51

#	Article	IF	CITATIONS
127	Incomplete chest wall decompression: A clinical evaluation of CPR performance by trained laypersons and an assessment of alternative manual chest compression–decompression techniques. Resuscitation, 2006, 71, 341-351.	3.0	67
128	Clinical and hemodynamic comparison of 15:2 and 30:2 compression-to-ventilation ratios for cardiopulmonary resuscitation*. Critical Care Medicine, 2006, 34, 1444-1449.	0.9	144
129	Incomplete chest wall decompression: a clinical evaluation of CPR performance by EMS personnel and assessment of alternative manual chest compression–decompression techniques. Resuscitation, 2005, 64, 353-362.	3.0	222
130	Effects of incomplete chest wall decompression during cardiopulmonary resuscitation on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest. Resuscitation, 2005, 64, 363-372.	3.0	265
131	Intrathoracic Pressure Regulator During Continuous-Chest-Compression Advanced Cardiac Resuscitation Improves Vital Organ Perfusion Pressures in a Porcine Model of Cardiac Arrest. Circulation, 2005, 112, 803-811.	1.6	75
132	Reducing ventilation frequency during cardiopulmonary resuscitation in a porcine model of cardiac arrest. Respiratory Care, 2005, 50, 628-35.	1.6	53
133	Hyperventilation-Induced Hypotension During Cardiopulmonary Resuscitation. Circulation, 2004, 109, 1960-1965.	1.6	7 57
134	Reducing ventilation frequency combined with an inspiratory impedance device improves CPR efficiency in swine model of cardiac arrest. Resuscitation, 2004, 61, 75-82.	3.0	56
135	Spontaneous breathing through an inspiratory impedance threshold device augments cardiac index and stroke volume index in a pediatric porcine model of hemorrhagic hypovolemia. Critical Care Medicine, 2004, 32, S398-S405.	0.9	51
136	Cardiorespiratory interactions and blood flow generation during cardiac arrest and other states of low blood flow. Current Opinion in Critical Care, 2003, 9, 183-188.	3.2	26
137	Contemporary approaches to cardiopulmonary resuscitation: physiology-guided approaches. Journal of Emergency and Critical Care Medicine, 0, 4, 19-19.	0.7	7