
Dean G Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5808127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ESKAPEing the labyrinth of antibacterial discovery. Nature Reviews Drug Discovery, 2015, 14, 529-542.	46.4	498
2	Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nature Reviews Drug Discovery, 2018, 17, 167-181.	46.4	294
3	Trends and Exceptions of Physical Properties on Antibacterial Activity for Gram-Positive and Gram-Negative Pathogens. Journal of Medicinal Chemistry, 2014, 57, 10144-10161.	6.4	196
4	Structural insight into allosteric modulation of protease-activated receptor 2. Nature, 2017, 545, 112-115.	27.8	192
5	New natural products as new leads for antibacterial drug discovery. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 413-418.	2.2	162
6	A Decade of FDA-Approved Drugs (2010–2019): Trends and Future Directions. Journal of Medicinal Chemistry, 2021, 64, 2312-2338.	6.4	145
7	Where Do Recent Small Molecule Clinical Development Candidates Come From?. Journal of Medicinal Chemistry, 2018, 61, 9442-9468.	6.4	131
8	A Convenient Synthesis of Dimethyl (Diazomethyl)phosphonate (Seyferth/Gilbert Reagent). Journal of Organic Chemistry, 1996, 61, 2540-2541.	3.2	84
9	Novel Antibacterial Targets and Compounds Revealed by a High-Throughput Cell Wall Reporter Assay. Journal of Bacteriology, 2015, 197, 1726-1734.	2.2	79
10	Acute pharmacological modulation of mGluR8 reduces measures of anxiety. Behavioural Brain Research, 2010, 212, 168-173.	2.2	64
11	The clinical trial landscape in amyotrophic lateral sclerosis—Past, present, and future. Medicinal Research Reviews, 2020, 40, 1352-1384.	10.5	61
12	CETSA beyond Soluble Targets: a Broad Application to Multipass Transmembrane Proteins. ACS Chemical Biology, 2019, 14, 1913-1920.	3.4	55
13	Understanding Our Love Affair with <i>p</i> -Chlorophenyl: Present Day Implications from Historical Biases of Reagent Selection. Journal of Medicinal Chemistry, 2015, 58, 2390-2405.	6.4	54
14	Discovery of a potent respiratory syncytial virus RNA polymerase inhibitor. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6789-6793.	2.2	38
15	N-Methyl-D-Aspartate Receptor (NMDA) Antagonists as Potential Pain Therapeutics. Current Topics in Medicinal Chemistry, 2006, 6, 749-770.	2.1	37
16	Opportunities and Challenges in Phenotypic Screening for Neurodegenerative Disease Research. Journal of Medicinal Chemistry, 2020, 63, 1823-1840.	6.4	33
17	Emerging small-molecule therapeutic approaches for amyotrophic lateral sclerosis and frontotemporal dementia. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126942.	2.2	31
18	Discovery of novel positive allosteric modulators of the metabotropic glutamate receptor 5 (mGlu5). Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1402-1406.	2.2	28

DEAN G BROWN

#	Article	IF	CITATIONS
19	4-Aryl piperazine and piperidine amides as novel mGluR5 positive allosteric modulators. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 7381-7384.	2.2	26
20	2,6-Disubstituted pyrazines and related analogs as NR2B site antagonists of the NMDA receptor with anti-depressant activity. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3399-3403.	2.2	24
21	Azepines and Piperidines with Dual Norepinephrine Dopamine Uptake Inhibition and Antidepressant Activity. ACS Medicinal Chemistry Letters, 2013, 4, 46-51.	2.8	24
22	Synthesis of Azulenone Skeletons by Reaction of 2-Phenyl-2-acylketenes [RCO(Ph)CCO] with Alkynyl Ethers:  Mechanistic Aspects and Further Transformations. Journal of Organic Chemistry, 1998, 63, 1630-1636.	3.2	23
23	Discovery of 8-azabicyclo[3.2.1]octan-3-yloxy-benzamides as selective antagonists of the kappa opioid receptor. Part 1. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5847-5852.	2.2	22
24	Discovery of Spirofused Piperazine and Diazepane Amides as Selective Histamine-3 Antagonists with in Vivo Efficacy in a Mouse Model of Cognition. Journal of Medicinal Chemistry, 2014, 57, 733-758.	6.4	22
25	Drug discovery strategies to outer membrane targets in Gram-negative pathogens. Bioorganic and Medicinal Chemistry, 2016, 24, 6320-6331.	3.0	22
26	In Vitro Metabolism Studies of Nomifensine Monooxygenation Pathways: Metabolite Identification, Reaction Phenotyping, and Bioactivation Mechanism. Drug Metabolism and Disposition, 2010, 38, 1767-1778.	3.3	21
27	Synthesis of 7-chloro-2,3-dihydro-2-[1-(pyridinyl)alkyl]-pyridazino[4,5- b]quinoline-1,4,10(5 H)-triones as NMDA glycine-site antagonists. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3553-3556.	2.2	20
28	SAR development of a series of 8-azabicyclo[3.2.1]octan-3-yloxy-benzamides as kappa opioid receptor antagonists. Part 2. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5405-5410.	2.2	17
29	Pyridazinoquinolinetriones as NMDA Glycine-Site Antagonists with Oral Antinociceptive Activity in a Model of Neuropathic Pain. Journal of Medicinal Chemistry, 2007, 50, 3113-3131.	6.4	14
30	Identification of Multiple Glutathione Conjugates of 8-Amino- 2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline maleate (Nomifensine) in Liver Microsomes and Hepatocyte Preparations: Evidence of the Bioactivation of Nomifensine. Drug Metabolism and Disposition, 2010, 38, 46-60.	3.3	14
31	Promiscuity of in Vitro Secondary Pharmacology Assays and Implications for Lead Optimization Strategies. Journal of Medicinal Chemistry, 2020, 63, 6251-6275.	6.4	12
32	Stuck in a rut with old chemistry. Drug Discovery Today, 2016, 21, 701-703.	6.4	11
33	Ligand-Efficient Inhibitors of <i>Trichomonas vaginalis</i> Adenosine/Guanosine Preferring Nucleoside Ribohydrolase. ACS Infectious Diseases, 2019, 5, 345-352.	3.8	8
34	Discovery and Preclinical Validation of [11C]AZ13153556, a Novel Probe for the Histamine Type 3 Receptor. ACS Chemical Neuroscience, 2016, 7, 177-184.	3.5	7
35	Tool inhibitors and assays to interrogate the biology of the TRAF2 and NCK interacting kinase. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1962-1967.	2.2	7
36	Discovery of Ligand-Efficient Scaffolds for the Design of Novel <i>Trichomonas vaginalis</i> Uridine Nucleoside Ribohydrolase Inhibitors Using Fragment Screening. ACS Omega, 2019, 4, 16226-16232.	3.5	5

#	Article	IF	CITATIONS
37	Design and synthesis of peptide-based macrocyclic cyclophilin inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5304-5307.	2.2	4
38	Synthesis of 7-Chloro-2,3-dihydro-2-[1-(pyridinyl)alkyl]pyridazino [4,5-b]quinoline-1,4,10(5H)-triones as NMDA Glycine-Site Antagonists ChemInform, 2004, 35, no.	0.0	0
39	A Survey of the Clinical Pipeline in Neuroscience. Bioorganic and Medicinal Chemistry Letters, 2021, 56, 128482.	2.2	0