Katsuyuki T Yamato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5807987/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171, 287-304.e15.	28.9	973
2	Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. Journal of Molecular Biology, 1992, 223, 1-7.	4.2	602
3	Agrobacterium-Mediated Transformation of the Haploid Liverwort Marchantia polymorpha L., an Emerging Model for Plant Biology. Plant and Cell Physiology, 2008, 49, 1084-1091.	3.1	310
4	Molecular Genetic Tools and Techniques for <i>Marchantia polymorpha</i> Research. Plant and Cell Physiology, 2016, 57, 262-270.	3.1	195
5	Expression Profiling-Based Identification of CO2-Responsive Genes Regulated by CCM1 Controlling a Carbon-Concentrating Mechanism in Chlamydomonas reinhardtii. Plant Physiology, 2004, 135, 1595-1607.	4.8	188
6	Chromatin Organization in Early Land Plants Reveals an Ancestral Association between H3K27me3, Transposons, and Constitutive Heterochromatin. Current Biology, 2020, 30, 573-588.e7.	3.9	160
7	Application of Lifeact Reveals F-Actin Dynamics in Arabidopsis thaliana and the Liverwort, Marchantia polymorpha. Plant and Cell Physiology, 2009, 50, 1041-1048.	3.1	127
8	Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6472-6477.	7.1	125
9	Direct transformation of the liverwort Marchantia polymorpha L. by particle bombardment using immature thalli developing from spores. Plant Cell Reports, 2008, 27, 1467-1473.	5.6	111
10	An Evolutionarily Conserved Plant RKD Factor Controls Germ Cell Differentiation. Current Biology, 2016, 26, 1775-1781.	3.9	109
11	Co-option of a photoperiodic growth-phase transition system during land plant evolution. Nature Communications, 2014, 5, 3668.	12.8	100
12	Evolutionarily Conserved Regulatory Mechanisms of Abscisic Acid Signaling in Land Plants: Characterization of <i>ABSCISIC ACID INSENSITIVE1</i> -Like Type 2C Protein Phosphatase in the Liverwort <i>Marchantia polymorpha</i> . Plant Physiology, 2010, 152, 1529-1543.	4.8	96
13	The Y chromosome in the liverwort <i>Marchantia polymorpha</i> has accumulated unique repeat sequences harboring a male-specific gene. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 9454-9459.	7.1	95
14	Generative Cell Specification Requires Transcription Factors Evolutionarily Conserved in Land Plants. Current Biology, 2018, 28, 479-486.e5.	3.9	87
15	Bryophyte 5S rDNA was inserted into 45S rDNA repeat units after the divergence from higher land plants. Plant Molecular Biology, 1999, 41, 679-685.	3.9	84
16	Transcriptional Framework of Male Gametogenesis in the Liverwort <i>Marchantia polymorpha</i> L Plant and Cell Physiology, 2016, 57, 325-338.	3.1	83
17	SNARE Molecules in <i>Marchantia polymorpha</i> : Unique and Conserved Features of the Membrane Fusion Machinery. Plant and Cell Physiology, 2016, 57, 307-324.	3.1	82
18	Gene clusters for ribosomal proteins in the mitochondrial genome of a liverwort,Marchantia polymorpha. Nucleic Acids Research, 1992, 20, 3199-3205.	14.5	79

#	Article	IF	CITATIONS
19	Direct transformation and plant regeneration of the haploid liverwort Marchantia polymorpha L. Transgenic Research, 2000, 9, 179-185.	2.4	71
20	Visualization of auxin-mediated transcriptional activation using a common auxin-responsive reporter system in the liverwort Marchantia polymorpha. Journal of Plant Research, 2012, 125, 643-651.	2.4	70
21	Identification of miRNAs and Their Targets in the Liverwort <i>Marchantia polymorpha</i> by Integrating RNA-Seq and Degradome Analyses. Plant and Cell Physiology, 2016, 57, 339-358.	3.1	70
22	Construction of male and female PAC genomic libraries suitable for identification of Yâ€chromosomeâ€specific clones from the liverwort, <i>Marchantia polymorpha</i> . Plant Journal, 2000, 24, 421-428.	5.7	65
23	Phototropin Encoded by a Single-Copy Gene Mediates Chloroplast Photorelocation Movements in the Liverwort <i>Marchantia polymorpha</i> Â Â. Plant Physiology, 2014, 166, 411-427.	4.8	63
24	Development and Molecular Genetics of <i>Marchantia polymorpha</i> . Annual Review of Plant Biology, 2021, 72, 677-702.	18.7	61
25	The Naming of Names: Guidelines for Gene Nomenclature in <i>Marchantia</i> . Plant and Cell Physiology, 2016, 57, 257-261.	3.1	60
26	A <i>cis</i> â€ecting bidirectional transcription switch controls sexual dimorphism in the liverwort. EMBO Journal, 2019, 38, .	7.8	59
27	Transfer RNA genes in the mitochondrial genome from a liverwort,Marchantia polymorpha: the absence of chloroplast-like tRNAs. Nucleic Acids Research, 1992, 20, 3773-3777.	14.5	54
28	Transcription factor DUO1 generated by neo-functionalization is associated with evolution of sperm differentiation in plants. Nature Communications, 2018, 9, 5283.	12.8	54
29	Group I introns in the liverwort mitochondrial genome: the gene coding for subunit 1 of cytochrome oxidase shares five intron positions with its fungal counterparts. Nucleic Acids Research, 1993, 21, 1297-1305.	14.5	53
30	Isolation and Characterization of Δ6-Desaturase, an ELO-Like Enzyme and Δ5-Desaturase from the Liverwort Marchantia Polymorpha and Production of Arachidonic and Eicosapentaenoic Acids in the Methylotrophic Yeast Pichia Pastoris. Plant Molecular Biology, 2004, 54, 335-352.	3.9	52
31	Cloning and characterization of a cDNA encoding β-amyrin synthase from petroleum plant Euphorbia tirucalli L Phytochemistry, 2005, 66, 1759-1766.	2.9	51
32	Multicopy genes uniquely amplified in the Y chromosome-specific repeats of the liverwort Marchantia polymorpha. Nucleic Acids Research, 2002, 30, 4675-4681.	14.5	50
33	Production of Arachidonic and Eicosapentaenoic Acids in Plants Using Bryophyte Fatty Acid Δ6-Desaturase, Δ6-Elongase, and Δ5-Desaturase Genes. Bioscience, Biotechnology and Biochemistry, 2008, 72, 435-444.	1.3	50
34	Cloning and characterization of a squalene synthase gene from a petroleum plant, Euphorbia tirucalli L Planta, 2009, 229, 1243-1252.	3.2	50
35	Simple and efficient plastid transformation system for the liverwort Marchantia polymorpha L. suspension-culture cells. Transgenic Research, 2007, 16, 41-49.	2.4	47
36	A Front-end Desaturase from Chlamydomonas reinhardtii Produces Pinolenic and Coniferonic Acids by ω13 Desaturation in Methylotrophic Yeast and Tobacco. Plant and Cell Physiology, 2006, 47, 64-73.	3.1	45

ΚΑΤΣΟΥΟΚΙ Τ ΥΑΜΑΤΟ

#	Article	IF	CITATIONS
37	Identification of a Hexenal Reductase That Modulates the Composition of Green Leaf Volatiles. Plant Physiology, 2018, 178, 552-564.	4.8	45
38	Heteroplasmy and homoplasmy for maize mitochondrial mutants: a rare homoplasmic nad4 deletion mutant plant. , 1999, 90, 369-373.		44
39	Identification of the sex-determining factor in the liverwort Marchantia polymorpha reveals unique evolution of sex chromosomes in a haploid system. Current Biology, 2021, 31, 5522-5532.e7.	3.9	36
40	GEMMA CUP-ASSOCIATED MYB1, an Ortholog of Axillary Meristem Regulators, Is Essential in Vegetative Reproduction in MarchantiaÂpolymorpha. Current Biology, 2019, 29, 3987-3995.e5.	3.9	35
41	Mitochondrial genome structure of rice suspension culture from cytoplasmic male-sterile line (A-58CMS): reappraisal of the master circle. Theoretical and Applied Genetics, 1992, 83, 279-288.	3.6	34
42	ANGUSTIFOLIA, a plant homolog of CtBP/BARS, functions outside the nucleus. Plant Journal, 2011, 68, 788-799.	5.7	34
43	Expressed Sequence Tags from Immature Female Sexual Organ of a Liverwort, Marchantia polymorpha. DNA Research, 1999, 6, 1-11.	3.4	32
44	Isolation of X and Y Chromosome-Specific DNA Markers From a Liverwort, <i>Marchantia polymorpha</i> , by Representational Difference Analysis. Genetics, 2001, 159, 981-985.	2.9	31
45	Characterization of the Lipid Accumulation in a New Microalgal Species, Pseudochoricystis ellipsoidea (Trebouxiophyceae). Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2010, 89, 909-913.	0.2	29
46	Functional Analysis of a β-Ketoacyl-CoA Synthase Gene,MpFAE2, by Gene Silencing in the LiverwortMarchantia polymorphaL Bioscience, Biotechnology and Biochemistry, 2003, 67, 605-612.	1.3	26
47	Arachidonic acid-dependent carbon-eight volatile synthesis from wounded liverwort (Marchantia) Tj ETQq1 1 0.7	'84314 rgB 2.9	T Qverlock 25
48	Cryopreservation of Gemmae from the Liverwort <i>Marchantia polymorpha</i> L. Plant and Cell Physiology, 2016, 57, 300-306.	3.1	25
49	Cloning and Nucleotide Sequence of afrxC-ORF469 Gene Cluster ofSynechocystisPCC6803: Conservation with Liverwort ChloroplastfrxC-ORF465 andnifOperon. Bioscience, Biotechnology and Biochemistry, 1992, 56, 788-793.	1.3	24
50	Complete nucleotide sequence of the mitochondrial DNA from a liverwort,Marchantia polymorpha. Plant Molecular Biology Reporter, 1992, 10, 105-163.	1.8	23
51	The RopGEF KARAPPO Is Essential for the Initiation of Vegetative Reproduction in Marchantia polymorpha. Current Biology, 2019, 29, 3525-3531.e7.	3.9	23
52	Comparative study of gene expression and major proteins' function of laticifers in lignified and unlignified organs of mulberry. Planta, 2012, 235, 589-601.	3.2	22
53	Novel gateway binary vectors for rapid tripartite DNA assembly and promoter analysis with various reporters and tags in the liverwort Marchantia polymorpha. PLoS ONE, 2018, 13, e0204964.	2.5	22
54	Plastid Transformation of Sporelings and Suspension-Cultured Cells from the Liverwort Marchantia polymorpha L Methods in Molecular Biology, 2014, 1132, 439-447.	0.9	22

ΚΑΤSUYUKI Τ ΥΑΜΑΤΟ

#	Article	IF	CITATIONS
55	Comparison of Expressed Sequence Tags from Male and Female Sexual Organs of Marchantia polymorpha. DNA Research, 2000, 7, 165-174.	3.4	20
56	Isolation and functional characterization of fatty acid Δ5-elongase gene from the liverwortMarchantia polymorphaL. FEBS Letters, 2006, 580, 149-154.	2.8	20
57	Abscisic acidâ€induced gene expression in the liverwort <i>Marchantia polymorpha</i> is mediated by evolutionarily conserved promoter elements. Physiologia Plantarum, 2016, 156, 407-420.	5.2	20
58	<i>n</i> -Hexanal and (<i>Z</i>)-3-hexenal are generated from arachidonic acid and linolenic acid by a lipoxygenase in <i>Marchantia polymorpha</i> L Bioscience, Biotechnology and Biochemistry, 2017, 81, 1148-1155.	1.3	20
59	Evolution of ribosomal DNA unit on the X chromosome independent of autosomal units in the liverwort Marchantia polymorpha. Chromosome Research, 2003, 11, 695-703.	2.2	19
60	Dynamic reorganization of the endomembrane system during spermatogenesis in Marchantia polymorpha. Journal of Plant Research, 2017, 130, 433-441.	2.4	19
61	MpFAE3, a β-Ketoacyl-CoA Synthase Gene in the LiverwortMarchantia polymorphaL., Is Preferentially Involved in Elongation of Palmitic Acid to Stearic Acid. Bioscience, Biotechnology and Biochemistry, 2003, 67, 1667-1674.	1.3	17
62	A mutant with constitutive sexual organ development in Marchantia polymorpha L Sexual Plant Reproduction, 2004, 16, 253-257.	2.2	17
63	Transcriptome and proteome analyses provide insight into laticifer's defense of Euphorbia tirucalli against pests. Plant Physiology and Biochemistry, 2016, 108, 434-446.	5.8	16
64	Loss of CG methylation in Marchantia polymorpha causes disorganization of cell division and reveals unique DNA methylation regulatory mechanisms of non-CG methylation. Plant and Cell Physiology, 2018, 59, 2421-2431.	3.1	15
65	Expressed sequence tags from callus of Euphorbia tirucalli: A resource for genes involved in triterpenoid and sterol biosynthesis. Plant Biotechnology, 2004, 21, 349-353.	1.0	11
66	Plant regeneration from internode explants of Euphorbia tirucalli. Plant Biotechnology, 2004, 21, 397-399.	1.0	11
67	Physcomitrella patens Has Kinase-LRR R Gene Homologs and Interacting Proteins. PLoS ONE, 2014, 9, e95118.	2.5	11
68	Fungal-Type Terpene Synthases in <i>Marchantia polymorpha</i> Are Involved in Sesquiterpene Biosynthesis in Oil Body Cells. Plant and Cell Physiology, 2021, 62, 528-537.	3.1	11
69	Cotranscriptional expression of mitochondrial genes for subunits of NADH dehydrogenase, nad5, nad4, nad2, in Marchantia polymorpha. Molecular Genetics and Genomics, 1993, 237, 343-350.	2.4	10
70	Gene content, organization and molecular evolution of plant organellar genomes and sex chromosomes - Insights from the case of the liverwort Marchantia polymorpha. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2009, 85, 108-124.	3.8	10
71	Cryopreservation of Marchantia polymorpha spermatozoa. Journal of Plant Research, 2018, 131, 1047-1054.	2.4	9
72	Occurrence and transcription of genes for nad1, nad3, nad4L, and nad6, coding for NADH dehydrogenase subunits 1, 3, 4L, and 6, in liverwort mitochondria. Current Genetics, 1993, 23, 526-531.	1.7	7

ΚΑΤΣΟΥΟΚΙ Τ ΥΑΜΑΤΟ

#	Article	IF	CITATIONS
73	Regulation of the Poly(A) Status of Mitochondrial mRNA by Poly(A)-Specific Ribonuclease Is Conserved among Land Plants. Plant and Cell Physiology, 2020, 61, 470-480.	3.1	7
74	Image-Based Analysis Revealing the Molecular Mechanism of Peroxisome Dynamics in Plants. Frontiers in Cell and Developmental Biology, 2022, 10, 883491.	3.7	4
75	"Fusion―in fertilization: interdisciplinary collaboration among plant and animal scientists. Journal of Plant Research, 2017, 130, 419-421.	2.4	2
76	<i>De novo</i> Short Read Assembly and Functional Annotation of <i>Eleocharis vivipara</i> , a C ₃ /C ₄ Interconvertible Sedge Plant. Environmental Control in Biology, 2018, 56, 81-87.	0.7	2
77	Plastid Transformation of Sporelings from the Liverwort Marchantia polymorpha L Methods in Molecular Biology, 2021, 2317, 333-341.	0.9	1
78	The RopGEF KARAPPO is Essential for the Initiation of Vegetative Reproduction in Marchantia. SSRN Electronic Journal, 0, , .	0.4	0