
Jia-Yu Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5807468/publications.pdf Version: 2024-02-01

Ιιλ-Υτι Χιτε

#	Article	IF	CITATIONS
1	Mitochondrial genes from 18 angiosperms fill sampling gaps for phylogenomic inferences of the early diversification of flowering plants. Journal of Systematics and Evolution, 2022, 60, 773-788.	1.6	16
2	Fitness benefits play a vital role in the retention of the <i>Pi-ta</i> susceptible alleles. Genetics, 2022, 220, .	1.2	2
3	The genome of <i>Hibiscus hamabo</i> reveals its adaptation to saline and waterlogged habitat. Horticulture Research, 2022, 9, uhac067.	2.9	12
4	The Cycas genome and the early evolution of seed plants. Nature Plants, 2022, 8, 389-401.	4.7	80
5	Evolution of Reproductive Traits and Implications for Adaptation and Diversification in the Yam Genus Dioscorea L Diversity, 2022, 14, 349.	0.7	1
6	Discovery of novel VEGFR-2 inhibitors embedding 6,7-dimethoxyquinazoline and diarylamide fragments. Bioorganic and Medicinal Chemistry Letters, 2021, 36, 127788.	1.0	13
7	Whole-genome microsynteny-based phylogeny of angiosperms. Nature Communications, 2021, 12, 3498.	5.8	53
8	A chromosome-level genome assembly of rugged rose (Rosa rugosa) provides insights into its evolution, ecology, and floral characteristics. Horticulture Research, 2021, 8, 141.	2.9	29
9	Evolution of NLR Resistance Genes in Magnoliids: Dramatic Expansions of CNLs and Multiple Losses of TNLs. Frontiers in Plant Science, 2021, 12, 777157.	1.7	11
10	Editorial: Evolution and Functional Mechanisms of Plant Disease Resistance. Frontiers in Genetics, 2020, 11, 593240.	1.1	8
11	Maternal Inheritance of U's Triangle and Evolutionary Process of Brassica Mitochondrial Genomes. Frontiers in Plant Science, 2020, 11, 805.	1.7	21
12	The hornwort genome and early land plant evolution. Nature Plants, 2020, 6, 107-118.	4.7	203
13	Revisiting the Origin of Plant NBS-LRR Genes. Trends in Plant Science, 2019, 24, 9-12.	4.3	128
14	Genome- Wide Analysis of the Nucleotide Binding Site Leucine-Rich Repeat Genes of Four Orchids Revealed Extremely Low Numbers of Disease Resistance Genes. Frontiers in Genetics, 2019, 10, 1286.	1.1	61
15	Complete mitochondrial genome sequence of Anthoceros angustus: conservative evolution of the mitogenomes in hornworts. Bryologist, 2018, 121, 14.	0.1	13
16	Taxonomic and phylogenetic significance of leaf venation characteristics in Dioscorea plants. Archives of Biological Sciences, 2018, 70, 397-407.	0.2	4
17	Regulation of FATTY ACID ELONGATION1 expression and production in Brassica oleracea and Capsella rubella. Planta, 2017, 246, 763-778.	1.6	5
18	Distinct Patterns of Gene Gain and Loss: Diverse Evolutionary Modes of NBS-Encoding Genes in Three Solanaceae Crop Species. G3: Genes, Genomes, Genetics, 2017, 7, 1577-1585.	0.8	61

JIA-YU XUE

#	Article	IF	CITATIONS
19	Divergence and Conservative Evolution of XTNX Genes in Land Plants. Frontiers in Plant Science, 2017, 8, 1844.	1.7	22
20	Insertion DNA Accelerates Meiotic Interchromosomal Recombination in <i>Arabidopsis thaliana</i> . Molecular Biology and Evolution, 2016, 33, 2044-2053.	3.5	3
21	Uncovering the dynamic evolution of nucleotideâ€binding siteâ€leucineâ€rich repeat (NBSâ€LRR) genes in Brassicaceae. Journal of Integrative Plant Biology, 2016, 58, 165-177.	4.1	105
22	Large-Scale Analyses of Angiosperm Nucleotide-Binding Site-Leucine-Rich Repeat Genes Reveal Three Anciently Diverged Classes with Distinct Evolutionary Patterns. Plant Physiology, 2016, 170, 2095-2109.	2.3	269
23	Design, synthesis and biological evaluation of N-phenylquinazolin-4-amine hybrids as dual inhibitors of VEGFR-2 and HDAC. European Journal of Medicinal Chemistry, 2016, 109, 1-12.	2.6	60
24	Evolution of the KCS gene family in plants: the history of gene duplication, sub/neofunctionalization and redundancy. Molecular Genetics and Genomics, 2016, 291, 739-752.	1.0	65
25	Hybrids from 4-anilinoquinazoline and hydroxamic acid as dual inhibitors of vascular endothelial growth factor receptor-2 and histone deacetylase. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5137-5141.	1.0	35
26	Discovery of quinazolin-4-amines bearing benzimidazole fragments as dual inhibitors of c-Met and VEGFR-2. Bioorganic and Medicinal Chemistry, 2014, 22, 4735-4744.	1.4	51
27	Long-Term Evolution of Nucleotide-Binding Site-Leucine-Rich Repeat Genes: Understanding Gained from and beyond the Legume Family Â. Plant Physiology, 2014, 166, 217-234.	2.3	161
28	Discovery of N-(2-phenyl-1H-benzo[d]imidazol-5-yl)quinolin-4-amine derivatives as novel VEGFR-2 kinase inhibitors. European Journal of Medicinal Chemistry, 2014, 84, 698-707.	2.6	38
29	Loss/retention and evolution of NBS-encoding genes upon whole genome triplication of Brassica rapa. Gene, 2014, 540, 54-61.	1.0	45
30	The <i>Amborella</i> Genome and the Evolution of Flowering Plants. Science, 2013, 342, 1241089.	6.0	743
31	Design, synthesis and antibacterial activity studies of thiazole derivatives as potent ecKAS III inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4235-4238.	1.0	22
32	The Mitochondrial Genome of the Lycophyte Huperzia squarrosa: The Most Archaic Form in Vascular Plants. PLoS ONE, 2012, 7, e35168.	1.1	42
33	A Primary Survey on Bryophyte Species Reveals Two Novel Classes of Nucleotide-Binding Site (NBS) Genes. PLoS ONE, 2012, 7, e36700.	1.1	54
34	The Mitochondrial Genomes of the Early Land Plants Treubia lacunosa and Anomodon rugelii: Dynamic and Conservative Evolution. PLoS ONE, 2011, 6, e25836.	1.1	76
35	The complete mitochondrial genome sequence of the hornwort Phaeoceros laevis: retention of many ancient pseudogenes and conservative evolution of mitochondrial genomes in hornworts. Current Genetics, 2010, 56, 53-61.	0.8	84
36	Angiosperm phylogeny inferred from sequences of four mitochondrial genes. Journal of Systematics and Evolution, 2010, 48, 391-425.	1.6	173

JIA-YU XUE

#	Article	IF	Citations
37	Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytologist, 2010, 186, 514-525.	3.5	246
38	Novel 2,4,5-trisubstituted oxazole derivatives: Synthesis and antiproliferative activity. European Journal of Medicinal Chemistry, 2009, 44, 3930-3935.	2.6	38
39	The complete mitochondrial genome sequence of the liverwort Pleurozia purpurea reveals extremely conservative mitochondrial genome evolution in liverworts. Current Genetics, 2009, 55, 601-609.	0.8	56
40	Synthesis and biological evaluation of novel luteolin derivatives as antibacterial agents. European Journal of Medicinal Chemistry, 2009, 44, 908-914.	2.6	70
41	Synthesis of Resveratrol Analogues, and Evaluation of Their Cytotoxic and Xanthine Oxidase Inhibitory Activities. Chemistry and Biodiversity, 2008, 5, 636-642.	1.0	18
42	Enamines as novel antibacterials and their structure–activity relationships. European Journal of Medicinal Chemistry, 2008, 43, 1828-1836.	2.6	23
43	Synthesis, crystal structure and antimicrobial activity of deoxybenzoin derivatives from genistein. European Journal of Medicinal Chemistry, 2008, 43, 662-667.	2.6	45
44	Synthesis, Characterization, and Antibacterial and Cytotoxic Study of Metal Complexes with Schiff Base Ligands. Australian Journal of Chemistry, 2008, 61, 288.	0.5	38
45	Synthesis of α-Aminoalkyl Phosphonate Derivatives of Resveratrol as Potential Antitumour Agents. Australian Journal of Chemistry, 2008, 61, 472.	0.5	7
46	Synthesis and Structure - Activity Relationship Analysis of Enamines as Potential Antibacterial Agents. Australian Journal of Chemistry, 2007, 60, 957.	0.5	5
47	Synthesis, structure, and structure–activity relationship analysis of enamines as potential antibacterials. Bioorganic and Medicinal Chemistry, 2007, 15, 4212-4219.	1.4	23