## Yanan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5807420/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Composition Design and Structural Characterization of MOF-Derived Composites with Controllable Electromagnetic Properties. ACS Sustainable Chemistry and Engineering, 2017, 5, 7961-7971.                          | 6.7  | 179       |
| 2  | A permittivity regulating strategy to achieve high-performance electromagnetic wave absorbers with compatibility of impedance matching and energy conservation. New Journal of Chemistry, 2017, 41, 1259-1266.     | 2.8  | 155       |
| 3  | Cross-Linking-Derived Synthesis of Porous Co <sub><i>x</i></sub> Ni <sub><i>y</i></sub> /C<br>Nanocomposites for Excellent Electromagnetic Behaviors. ACS Applied Materials & Interfaces,<br>2017, 9, 38814-38823. | 8.0  | 152       |
| 4  | Multiple Interfaces Structure Derived from Metal-Organic Frameworks for Excellent Electromagnetic Wave Absorption. Particle and Particle Systems Characterization, 2017, 34, 1700006.                              | 2.3  | 74        |
| 5  | From Passive Inorganic Oxides to Active Matters of Micro/Nanomotors. Advanced Functional<br>Materials, 2020, 30, 2003195.                                                                                          | 14.9 | 33        |
| 6  | Effective Magnetic MOFs Adsorbent for the Removal of Bisphenol A, Tetracycline, Congo Red and<br>Methylene Blue Pollutions. Nanomaterials, 2021, 11, 1917.                                                         | 4.1  | 31        |
| 7  | Adjustable 3-D structure with enhanced interfaces and junctions towards microwave response using FeCo/C core-shell nanocomposites. Journal of Colloid and Interface Science, 2017, 507, 131-138.                   | 9.4  | 30        |
| 8  | A facile one-pot strategy for fabrication of carbon-based microwave absorbers: effects on annealing and paraffin content. Dalton Transactions, 2017, 46, 9097-9102.                                                | 3.3  | 26        |
| 9  | High-Efficiency Dye-Sensitized Solar Cells Based on Kesterite Cu <sub>2</sub> ZnSnSe <sub>4</sub><br>Inlaid on a Flexible Carbon Fabric Composite Counter Electrode. ACS Omega, 2020, 5, 24898-24905.              | 3.5  | 16        |
| 10 | Real-time single molecular study of a pretreated cellulose hydrolysis mode and individual enzyme movement. Biotechnology for Biofuels, 2016, 9, 85.                                                                | 6.2  | 14        |
| 11 | Chemically Grafting Carbon Nanotubes onto Carbon Fibers for Enhancing Interfacial Properties of<br>Fiber Metal Laminate. Materials, 2020, 13, 3813.                                                                | 2.9  | 14        |
| 12 | Effect of chemically grafted CNTs onto carbon fiber on the mechanical properties of fiber metal laminates. Composites Communications, 2022, 29, 101005.                                                            | 6.3  | 8         |
| 13 | Preparation and Characterization of Iron-Doped Tricalcium Silicate-Based Bone Cement as a Bone<br>Repair Material. Materials, 2020, 13, 3670.                                                                      | 2.9  | 7         |
| 14 | Optimization of preparation technology on fibre metal laminates (FMLs) for high-temperature applications. International Journal of Lightweight Materials and Manufacture, 2020, 3, 317-327.                        | 2.1  | 7         |
| 15 | Effects of the Electrophoretic Deposition of CNTs on the Mechanical Properties of Ti/CFRP Composite Laminates. ACS Omega, 2022, 7, 1337-1346.                                                                      | 3.5  | 6         |
| 16 | Nanoscale insights into full-length prion protein aggregation on model lipid membranes. Chemical<br>Communications, 2016, 52, 8533-8536.                                                                           | 4.1  | 4         |
| 17 | Plant cell wall hydrolysis process reveals structure–activity relationships. Plant Methods, 2020, 16,<br>147                                                                                                       | 4.3  | 4         |
| 18 | A simple strategy to fabricate poly (acrylamide-co-alginate)/gold nanocomposites for inactivation of bacteria. Applied Physics A: Materials Science and Processing, 2014, 117, 2009-2018.                          | 2.3  | 3         |

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Facile synthesis and antibacterial evaluation of poly(acrylamideâ€ <i>co</i> â€{βâ€cyclodextrin))/silver<br>nanocomposite. Polymer Composites, 2016, 37, 1480-1487. | 4.6 | 2         |