Matej Kranjc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5806969/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CA-534-03 INVESTIGATING PULSED FIELD (PFA) VS RADIOFREQUENCY ABLATION (RFA) LESION CHARACTERISTICS IN AN IN VIVO HEALTHY PORCINE LEFT VENTRICLE (LV) USING 3D LGE AND NATIVE T1W MAGNETIC RESONANCE IMAGING (MRI). Heart Rhythm, 2022, 19, S67-S68.	0.7	0
2	Contactless delivery of plasmid encoding EGFP in vivo by high-intensity pulsed electromagnetic field. Bioelectrochemistry, 2021, 141, 107847.	4.6	6
3	PEF-treated plant and animal tissues: Insights by approaching with different electroporation assessment methods. Innovative Food Science and Emerging Technologies, 2021, 74, 102872.	5.6	16
4	Contactless electroporation induced by high intensity pulsed electromagnetic fields via distributed nanoelectrodes. Bioelectrochemistry, 2020, 132, 107440.	4.6	24
5	Editorial for the Special Issue of Bioelectrochemistry. Bioelectrochemistry, 2020, 135, 107555.	4.6	0
6	High-Pulsed Electromagnetic Field Generator for Contactless Permeabilization of Cells <i>In Vitro</i> . IEEE Transactions on Magnetics, 2020, 56, 1-6.	2.1	8
7	Electrotransfer of siRNA to Silence Enhanced Green Fluorescent Protein in Tumor Mediated by a High Intensity Pulsed Electromagnetic Field. Vaccines, 2020, 8, 49.	4.4	12
8	Time-Dependent Finite Element Analysis of <i>In Vivo</i> Electrochemotherapy Treatment. Technology in Cancer Research and Treatment, 2018, 17, 153303381879051.	1.9	13
9	Electric Field Distribution and Electroporation Threshold. , 2017, , 1043-1058.		18
10	Principles and Use of Magnetic Resonance Electrical Impedance Tomography in Tissue Electroporation. , 2017, , 549-565.		0
11	Predicting irreversible electroporation-induced tissue damage by means of magnetic resonance electrical impedance tomography. Scientific Reports, 2017, 7, 10323.	3.3	24
12	Membrane permeabilization of mammalian cells using bursts of high magnetic field pulses. PeerJ, 2017, 5, e3267.	2.0	34
13	Electrochemotherapy by pulsed electromagnetic field treatment (PEMF) in mouse melanoma B16F10 <i>in vivo</i> . Radiology and Oncology, 2016, 50, 39-48.	1.7	48
14	Electric Field Distribution and Electroporation Threshold. , 2016, , 1-17.		2
15	Principles and Use of Magnetic Resonance Electrical Impedance Tomography in Tissue Electroporation. , 2016, , 1-18.		1
16	Electric field distribution in relation to cell membrane electroporation in potato tuber tissue studied by magnetic resonance techniques. Innovative Food Science and Emerging Technologies, 2016, 37, 384-390.	5.6	26
17	Current density imaging sequence for monitoring current distribution during delivery of electric pulses in irreversible electroporation. BioMedical Engineering OnLine, 2015, 14, S6.	2.7	8
18	In Situ Monitoring of Electric Field Distribution in Mouse Tumor during Electroporation. Radiology, 2015, 274, 115-123.	7.3	63

Matej Kranjc

#	Article	IF	CITATIONS
19	Magnetic resonance electrical impedance tomography for measuring electrical conductivity during electroporation. Physiological Measurement, 2014, 35, 985-996.	2.1	30
20	Magnetic resonance electrical impedance tomography for determining electric field distribution during electroporation. Journal of Physics: Conference Series, 2013, 434, 012086.	0.4	0
21	Numerical simulations aided development of nanosecond pulse electroporators. , 2012, , .		5
22	Assessing how electroporation affects the effective conductivity tensor of biological tissues. Applied Physics Letters, 2012, 101, 213702.	3.3	26
23	Ex Vivo and In Silico Feasibility Study of Monitoring Electric Field Distribution in Tissue during Electroporation Based Treatments. PLoS ONE, 2012, 7, e45737.	2.5	40
24	Magnetic Resonance Electrical Impedance Tomography for Monitoring Electric Field Distribution During Tissue Electroporation. IEEE Transactions on Medical Imaging, 2011, 30, 1771-1778.	8.9	47
25	Numerical analysis and thermographic investigation of induction heating. International Journal of Heat and Mass Transfer, 2010, 53, 3585-3591.	4.8	104
26	Optimization of induction heating using numerical modeling and genetic algorithm. , 2009, , .		11
27	Blumlein Configuration for High-Repetition-Rate Pulse Generation of Variable Duration and Polarity Using Synchronized Switch Control. IEEE Transactions on Biomedical Engineering, 2009, 56, 2642-2648.	4.2	53