
Victor J Torres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5806040/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vaccination With Detoxified Leukocidin AB Reduces Bacterial Load in a <i>Staphylococcus aureus</i> Minipig Deep Surgical Wound Infection Model. Journal of Infectious Diseases, 2022, 225, 1460-1470.	4.0	9
2	<i>In Vitro</i> Cytotoxicity and Clinical Correlates of MRSA Bacteremia. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0155921.	3.2	2
3	Genome-Wide CRISPR-Cas9 Screen Does Not Identify Host Factors Modulating Streptococcus agalactiae β-Hemolysin/Cytolysin-Induced Cell Death. Microbiology Spectrum, 2022, 10, e0218621.	3.0	4
4	The Major Autolysin Atl Regulates the Virulence of Staphylococcus aureus by Controlling the Sorting of LukAB. Infection and Immunity, 2022, 90, e0005622.	2.2	10
5	Structural basis for inhibition of the drug efflux pump NorA from Staphylococcus aureus. Nature Chemical Biology, 2022, 18, 706-712.	8.0	23
6	Pathogen Species Is Associated With Mortality in Nosocomial Bloodstream Infection in Patients With COVID-19. Open Forum Infectious Diseases, 2022, 9, .	0.9	6
7	Human OTULIN haploinsufficiency impairs cell-intrinsic immunity to staphylococcal α-toxin. Science, 2022, 376, eabm6380.	12.6	25
8	Microbiome-Independent Effects of Antibiotics in a Murine Model of Nosocomial Infections. MBio, 2022, 13, .	4.1	3
9	Genetic variation of staphylococcal LukAB toxin determines receptor tropism. Nature Microbiology, 2021, 6, 731-745.	13.3	14
10	#31: Children with Invasive S. aureus Infection Produce Broadly Neutralizing Antibodies Against Distantly Related Variants of the Cytotoxin LukAB. Journal of the Pediatric Infectious Diseases Society, 2021, 10, S11-S11.	1.3	0
11	Staphylococcus aureus Peptide Methionine Sulfoxide Reductases Protect from Human Whole-Blood Killing. Infection and Immunity, 2021, 89, e0014621.	2.2	7
12	Analysing the fitness cost of antibiotic resistance to identify targets for combination antimicrobials. Nature Microbiology, 2021, 6, 1410-1423.	13.3	16
13	The cell envelope of Staphylococcus aureus selectively controls the sorting of virulence factors. Nature Communications, 2021, 12, 6193.	12.8	18
14	Autophagy and microbial pathogenesis. Cell Death and Differentiation, 2020, 27, 872-886.	11.2	54
15	Leukocidins and the Nuclease Nuc Prevent Neutrophil-Mediated Killing of Staphylococcus aureus Biofilms. Infection and Immunity, 2020, 88, .	2.2	29
16	Targeting leukocidin-mediated immune evasion protects mice from <i>Staphylococcus aureus</i> bacteremia. Journal of Experimental Medicine, 2020, 217, .	8.5	19
17	4165 Mechanisms of Prophage-Mediated Virulence Driving Community-Acquired MRSA Contagion. Journal of Clinical and Translational Science, 2020, 4, 11-12.	0.6	0
18	Repurposed Drugs That Block the Gonococcus-Complement Receptor 3 Interaction Can Prevent and Cure Gonococcal Infection of Primary Human Cervical Epithelial Cells. MBio, 2020, 11, .	4.1	18

#	Article	IF	CITATIONS
19	Distinct Features of Human Myeloid Cell Cytokine Response Profiles Identify Neutrophil Activation by Cytokines as a Prognostic Feature during Tuberculosis and Cancer. Journal of Immunology, 2020, 204, 3389-3399.	0.8	4
20	All major cholesterol-dependent cytolysins use glycans as cellular receptors. Science Advances, 2020, 6, eaaz4926.	10.3	46
21	Convergent Evolution of Neutralizing Antibodies to Staphylococcus aureus Î ³ -Hemolysin C That Recognize an Immunodominant Primary Sequence-Dependent B-Cell Epitope. MBio, 2020, 11, .	4.1	7
22	Structure-based discovery of a small-molecule inhibitor of methicillin-resistant Staphylococcus aureus virulence. Journal of Biological Chemistry, 2020, 295, 5944-5959.	3.4	25
23	Decoy exosomes provide protection against bacterial toxins. Nature, 2020, 579, 260-264.	27.8	149
24	Unbiased Identification of Immunogenic Staphylococcus aureus Leukotoxin B-Cell Epitopes. Infection and Immunity, 2020, 88, .	2.2	5
25	Exploiting species specificity to understand the tropism of a human-specific toxin. Science Advances, 2020, 6, eaax7515.	10.3	21
26	Identification of a domain critical for Staphylococcus aureus LukED receptor targeting and lysis of erythrocytes. Journal of Biological Chemistry, 2020, 295, 17241-17250.	3.4	15
27	Identification of biologic agents to neutralize the bicomponent leukocidins of <i>Staphylococcus aureus</i> . Science Translational Medicine, 2019, 11, .	12.4	22
28	<i>Staphylococcus aureus</i> Impairs the Function of and Kills Human Dendritic Cells via the LukAB Toxin. MBio, 2019, 10, .	4.1	49
29	The purine biosynthesis regulator PurR moonlights as a virulence regulator in <i>Staphylococcus aureus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13563-13572.	7.1	46
30	Staphylococcus aureus Leukocidins Target Endothelial DARC to Cause Lethality in Mice. Cell Host and Microbe, 2019, 25, 463-470.e9.	11.0	26
31	Manganese Detoxification by MntE Is Critical for Resistance to Oxidative Stress and Virulence of <i>Staphylococcus aureus</i> . MBio, 2019, 10, .	4.1	38
32	Vasculature-associated fat macrophages readily adapt to inflammatory and metabolic challenges. Journal of Experimental Medicine, 2019, 216, 786-806.	8.5	100
33	<i>Staphylococcus aureus</i> Secreted Toxins and Extracellular Enzymes. Microbiology Spectrum, 2019, 7, .	3.0	209
34	Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant <i>Staphylococcus aureus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1745-1754.	7.1	59
35	Serologic Detection of Antibodies Targeting the Leukocidin LukAB Strongly Predicts Staphylococcus aureus in Children With Invasive Infection. Journal of the Pediatric Infectious Diseases Society, 2019, 8, 128-135.	1.3	12
36	Skin Associated Staphylococcus Aureus Contributes to Disease Progression in CTCL. Blood, 2019, 134, 659-659.	1.4	5

#	Article	IF	CITATIONS
37	Nutritional Regulation of the Sae Two-Component System by CodY in Staphylococcus aureus. Journal of Bacteriology, 2018, 200, .	2.2	31
38	<i>Staphylococcus aureus</i> Responds to the Central Metabolite Pyruvate To Regulate Virulence. MBio, 2018, 9, .	4.1	69
39	After the deluge: mining Staphylococcus aureus genomic data for clinical associations and host–pathogen interactions. Current Opinion in Microbiology, 2018, 41, 43-50.	5.1	18
40	Staphylococcus aureus produces pain through pore-forming toxins and neuronal TRPV1 that is silenced by QX-314. Nature Communications, 2018, 9, 37.	12.8	117
41	Human Memory B Cells Targeting <i>Staphylococcus aureus</i> Exotoxins Are Prevalent with Skin and Soft Tissue Infection. MBio, 2018, 9, .	4.1	27
42	Hierarchy of human IgG recognition within the Staphylococcus aureus immunome. Scientific Reports, 2018, 8, 13296.	3.3	25
43	Genomic and Geographic Context for the Evolution of High-Risk Carbapenem-Resistant <i>Enterobacter cloacae</i> Complex Clones ST171 and ST78. MBio, 2018, 9, .	4.1	67
44	<i>Staphylococcus aureus</i> biofilms release leukocidins to elicit extracellular trap formation and evade neutrophil-mediated killing. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7416-7421.	7.1	134
45	Genome Plasticity of <i>agr</i> -Defective Staphylococcus aureus during Clinical Infection. Infection and Immunity, 2018, 86, .	2.2	50
46	Using Quantitative Spectrometry to Understand the Influence of Genetics and Nutritional Perturbations On the Virulence Potential of Staphylococcus aureus. Molecular and Cellular Proteomics, 2017, 16, S15-S28.	3.8	18
47	Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors. Nature Reviews Microbiology, 2017, 15, 435-447.	28.6	267
48	<i>Staphylococcus aureus</i> pathogenesis in diverse host environments. Pathogens and Disease, 2017, 75, ftx005.	2.0	168
49	The Suf Iron-Sulfur Cluster Biosynthetic System Is Essential in Staphylococcus aureus, and Decreased Suf Function Results in Global Metabolic Defects and Reduced Survival in Human Neutrophils. Infection and Immunity, 2017, 85, .	2.2	43
50	Bacteria and endothelial cells: a toxic relationship. Current Opinion in Microbiology, 2017, 35, 58-63.	5.1	38
51	Dietary Manganese Promotes Staphylococcal Infection of the Heart. Cell Host and Microbe, 2017, 22, 531-542.e8.	11.0	51
52	Staphylococcus aureus Strain Newman D2C Contains Mutations in Major Regulatory Pathways That Cripple Its Pathogenesis. Journal of Bacteriology, 2017, 199, .	2.2	7
53	Note from a Concerned American Citizen, an <i>Infection and Immunity</i> and <i>mBio</i> Editor, and a Scientist with Puerto Rican Roots. Infection and Immunity, 2017, 85, .	2.2	0
54	Monoclonal Antibodies Against the Staphylococcus aureus Bicomponent Leukotoxin AB Isolated Following Invasive Human Infection Reveal Diverse Binding and Modes of Action. Journal of Infectious Diseases, 2017, 215, 1124-1131.	4.0	65

#	Article	IF	CITATIONS
55	The Staphylococcus aureus superantigen SEIX is a bifunctional toxin that inhibits neutrophil function. PLoS Pathogens, 2017, 13, e1006461.	4.7	36
56	Genetic Variation and Altered Virulence Associated With Loss of Agr Quorum-Sensing Functionality in Patients With Staphylococcus aureus Bacteremia. Open Forum Infectious Diseases, 2016, 3, .	0.9	0
57	Human Monoclonal Antibodies to the Staphylococcus aureus Toxin LukAB have Distinct Mechanisms of Protection and Are Efficacious In Vivo. Open Forum Infectious Diseases, 2016, 3, .	0.9	Ο
58	Staphylococcus aureus Leukocidin LukED and HIV-1 gp120 Target Different Sequence Determinants on CCR5. MBio, 2016, 7, .	4.1	21
59	Staphylococcus aureus Coordinates Leukocidin Expression and Pathogenesis by Sensing Metabolic Fluxes via RpiRc. MBio, 2016, 7, .	4.1	51
60	Exploiting dominantâ€negative toxins to combat <i>Staphylococcus aureus</i> pathogenesis. EMBO Reports, 2016, 17, 428-440.	4.5	49
61	Staphylococcus aureus Pore-Forming Toxins. Current Topics in Microbiology and Immunology, 2016, 409, 121-144.	1.1	25
62	Host response to Staphylococcus aureus cytotoxins in children with cystic fibrosis. Journal of Cystic Fibrosis, 2016, 15, 597-604.	0.7	15
63	Antibody-Based Biologics and Their Promise to Combat Staphylococcus aureus Infections. Trends in Pharmacological Sciences, 2016, 37, 231-241.	8.7	93
64	The Relationship between Glycan Binding and Direct Membrane Interactions in Vibrio cholerae Cytolysin, a Channel-forming Toxin. Journal of Biological Chemistry, 2015, 290, 28402-28415.	3.4	11
65	Elimination of HIV-1-Infected Primary T Cell Reservoirs in an In Vitro Model of Latency. PLoS ONE, 2015, 10, e0126917.	2.5	5
66	Staphylococcus aureus Leukocidin A/B (LukAB) Kills Human Monocytes via Host NLRP3 and ASC when Extracellular, but Not Intracellular. PLoS Pathogens, 2015, 11, e1004970.	4.7	108
67	Autophagy is a key tolerance mechanism during <i>Staphylococcus aureus</i> infection. Autophagy, 2015, 11, 1184-1186.	9.1	27
68	The ever-emerging complexity of α-toxin's interaction with host cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14123-14124.	7.1	3
69	Structure-Based Functional Characterization of Repressor of Toxin (Rot), a Central Regulator of Staphylococcus aureus Virulence. Journal of Bacteriology, 2015, 197, 188-200.	2.2	19
70	Cytotoxic Virulence Predicts Mortality in Nosocomial Pneumonia Due to Methicillin-Resistant <i>Staphylococcus aureus</i> . Journal of Infectious Diseases, 2015, 211, 1862-1874.	4.0	51
71	Autophagy Mediates Tolerance to Staphylococcus aureus Alpha-Toxin. Cell Host and Microbe, 2015, 17, 429-440.	11.0	127
72	Counter inhibition between leukotoxins attenuates Staphylococcus aureus virulence. Nature Communications, 2015, 6, 8125.	12.8	33

#	Article	IF	CITATIONS
73	Staphylococcus aureus Targets the Duffy Antigen Receptor for Chemokines (DARC) to Lyse Erythrocytes. Cell Host and Microbe, 2015, 18, 363-370.	11.0	88
74	Gastrointestinal Dissemination and Transmission of Staphylococcus aureus following Bacteremia. Infection and Immunity, 2015, 83, 372-378.	2.2	15
75	CD4+ T Cells Promote the Pathogenesis of Staphylococcus aureus Pneumonia. Journal of Infectious Diseases, 2015, 211, 835-845.	4.0	50
76	Staphylococcus Aureus Targets the Duffy Antigen Receptor for Chemokines (DARC) to Lyse Erythrocytes. Blood, 2015, 126, 162-162.	1.4	0
77	Children with Invasive Staphylococcus aureus Disease Exhibit a Potently Neutralizing Antibody Response to the Cytotoxin LukAB. Infection and Immunity, 2014, 82, 1234-1242.	2.2	51
78	Identification of a Crucial Residue Required for Staphylococcus aureus LukAB Cytotoxicity and Receptor Recognition. Infection and Immunity, 2014, 82, 1268-1276.	2.2	56
79	The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5312-20.	7.1	110
80	Cell targeting by the Staphylococcus aureus pore-forming toxins: it's not just about lipids. Trends in Microbiology, 2014, 22, 21-27.	7.7	107
81	Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature, 2014, 510, 152-156.	27.8	429
82	The Bicomponent Pore-Forming Leucocidins of Staphylococcus aureus. Microbiology and Molecular Biology Reviews, 2014, 78, 199-230.	6.6	231
83	Evolution of hypervirulence by a <scp>MRSA</scp> clone through acquisition of a transposable element. Molecular Microbiology, 2014, 93, 664-681.	2.5	93
84	The staphylococcal toxins \hat{I}^3 -haemolysin AB and CB differentially target phagocytes by employing specific chemokine receptors. Nature Communications, 2014, 5, 5438.	12.8	126
85	Single-copy vectors for integration at the SaPI1 attachment site for Staphylococcus aureus. Plasmid, 2014, 76, 1-7.	1.4	54
86	CCR5 is a receptor for Staphylococcus aureus leukotoxin ED. Nature, 2013, 493, 51-55.	27.8	248
87	Staphylococcus aureus Leukotoxin ED Targets the Chemokine Receptors CXCR1 and CXCR2 to Kill Leukocytes and Promote Infection. Cell Host and Microbe, 2013, 14, 453-459.	11.0	157
88	The effects of Staphylococcus aureus leukotoxins on the host: cell lysis and beyond. Current Opinion in Microbiology, 2013, 16, 63-69.	5.1	98
89	Amphiphilic Cyclic Peptoids That Exhibit Antimicrobial Activity by Disrupting <i>Staphylococcus aureus</i> Membranes. European Journal of Organic Chemistry, 2013, 2013, 3560-3566.	2.4	49
90	<i>Staphylococcus aureus</i> LukAB cytotoxin kills human neutrophils by targeting the CD11b subunit of the integrin Mac-1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10794-10799.	7.1	180

#	Article	IF	CITATIONS
91	Staphylococcus aureus Elaborates Leukocidin AB To Mediate Escape from within Human Neutrophils. Infection and Immunity, 2013, 81, 1830-1841.	2.2	119
92	Rot and SaeRS Cooperate To Activate Expression of the Staphylococcal Superantigen-Like Exoproteins. Journal of Bacteriology, 2012, 194, 4355-4365.	2.2	56
93	<i>Staphylococcus aureus</i> leucocidin ED contributes to systemic infection by targeting neutrophils and promoting bacterial growth <i>in vivo</i> . Molecular Microbiology, 2012, 83, 423-435.	2.5	134
94	A Comparison of Linear and Cyclic Peptoid Oligomers as Potent Antimicrobial Agents. ChemMedChem, 2012, 7, 114-122.	3.2	114
95	Characterization of a new cytotoxin that contributes to Staphylococcus aureus pathogenesis. Molecular Microbiology, 2011, 79, 814-825.	2.5	158
96	<i>Staphylococcus aureus</i> Fur Regulates the Expression of Virulence Factors That Contribute to the Pathogenesis of Pneumonia. Infection and Immunity, 2010, 78, 1618-1628.	2.2	127
97	A Staphylococcus aureus Regulatory System that Responds to Host Heme and Modulates Virulence. Cell Host and Microbe, 2007, 1, 109-119.	11.0	212
98	Staphylococcus aureus Pathogenesis and Virulence Factor Regulation. , 0, , 58-78.		0