
Geoffrey P Bingham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5805802/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of optical texture properties as relative distance information for monocular guidance of reaching. Vision Research, 2022, 196, 108029.	0.7	2
2	The effect of movement frequency on perceptual-motor learning of a novel bimanual coordination pattern. Human Movement Science, 2022, 83, 102958.	0.6	0
3	Information for perceiving blurry events: Optic flow and color are additive. Attention, Perception, and Psychophysics, 2021, 83, 389-398.	0.7	Ο
4	Control of visually guided braking using constant-\$\$au\$\$ and proportional rate. Experimental Brain Research, 2021, 239, 217-235.	0.7	3
5	Does Perceiving Throwabiliy Require a Task Specific Device?. Ecological Psychology, 2021, 33, 236-256.	0.7	Ο
6	The role of intentionality in the performance of a learned 90° bimanual rhythmic coordination during frequency scaling: data and model. Experimental Brain Research, 2021, 239, 3059-3075.	0.7	5
7	Training 90Ű bimanual coordination at high frequency yields dependence on kinesthetic information and poor performance of dyadic unimanual coordination. Human Movement Science, 2021, 79, 102855.	0.6	0
8	Monocular guidance of reaches-to-grasp using visible support surface texture: data and model. Experimental Brain Research, 2021, 239, 765-776.	0.7	4
9	Time for Space and the Stability of Prospective Control: Reaching-to-Grasp Gibson. I-Perception, 2021, 12, 204166952110545.	0.8	0
10	Symmetry mediates the bootstrapping of 3-D relief slant to metric slant. Attention, Perception, and Psychophysics, 2020, 82, 1488-1503.	0.7	3
11	Bootstrapping a better slant: A stratified process for recovering 3D metric slant. Attention, Perception, and Psychophysics, 2020, 82, 1504-1519.	0.7	1
12	A stratified process for the perception of objects: From optical transformations to 3D relief structure to 3D similarity structure to slant or aspect ratio. Vision Research, 2020, 173, 77-89.	0.7	4
13	Change in effectivity yields recalibration of affordance geometry to preserve functional dynamics. Experimental Brain Research, 2019, 237, 817-827.	0.7	3
14	Training children aged 5–10†years in manual compliance control to improve drawing and handwriting. Human Movement Science, 2019, 65, 42-50.	0.6	4
15	Perception of time to contact of slow- and fast-moving objects using monocular and binocular motion information. Attention, Perception, and Psychophysics, 2018, 80, 1584-1590.	0.7	3
16	Information about relative phase in bimanual coordination is modality specific (not amodal), but kinesthesis and vision can teach one another. Human Movement Science, 2018, 60, 98-106.	0.6	11
17	Searching for invariance: Geographical and optical slant. Vision Research, 2018, 149, 30-39.	0.7	5
18	Training children aged 5–10Âyears in compliance control: tracing smaller figures yields better learning not specific to the scale of drawn figures. Experimental Brain Research, 2018, 236, 2589-2601.	0.7	3

#	Article	IF	CITATIONS
19	Predicting the duration of reach-to-grasp movements to objects with asymmetric contact surfaces. PLoS ONE, 2018, 13, e0193185.	1.1	1
20	Large continuous perspective change with noncoplanar points enables accurate slant perception Journal of Experimental Psychology: Human Perception and Performance, 2018, 44, 1508-1522.	0.7	6
21	When kinesthetic information is neglected in learning a Novel bimanual rhythmic coordination. Attention, Perception, and Psychophysics, 2017, 79, 1830-1840.	0.7	7
22	Breaking camouflage and detecting targets require optic flow and image structure information. Applied Optics, 2017, 56, 6410.	0.9	13
23	A Dynamical Analysis of the Suitability of Prehistoric Spheroids from the Cave of Hearths as Thrown Projectiles. Scientific Reports, 2016, 6, 30614.	1.6	10
24	Training compliance control yields improved drawing in 5–11year old children with motor difficulties. Human Movement Science, 2016, 48, 171-183.	0.6	4
25	Progressive reduction versus fixed level of support during training: When less is less. Human Movement Science, 2016, 45, 172-181.	0.6	3
26	Binocular Perception of 2D Lateral Motion and Guidance of Coordinated Motor Behavior. Perception, 2016, 45, 466-473.	0.5	0
27	Robot Guided â€~Pen Skill' Training in Children with Motor Difficulties. PLoS ONE, 2016, 11, e0151354.	1.1	3
28	The 50s Cliff: A Decline in Perceptuo-Motor Learning, Not a Deficit in Visual Motion Perception. PLoS ONE, 2015, 10, e0121708.	1.1	11
29	Evolutionary robotics techniques used to model information and control of visually guided braking. Adaptive Behavior, 2015, 23, 125-142.	1.1	4
30	Transfer of learning between unimanual and bimanual rhythmic movement coordination: transfer is a function of the task dynamic. Experimental Brain Research, 2015, 233, 2225-2238.	0.7	23
31	Training to improve manual control in 7–8 and 10–12year old children: Training eliminates performance differences between ages. Human Movement Science, 2015, 43, 90-99.	0.6	6
32	Perturbation of perceptual units reveals dominance hierarchy in cross calibration Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 328-341.	0.7	13
33	A geometric and dynamic affordance model of reaches-to-grasp: Men take greater risks than women Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 1542-1550.	0.7	4
34	Affine operations plus symmetry yield perception of metric shape with large perspective changes (≥45°): Data and model Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 83-93.	0.7	8
35	Calibration is both functional and anatomical Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 61-70.	0.7	17
36	Calibration is action specific but perturbation of perceptual units is not Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 404-415.	0.7	17

#	Article	IF	CITATIONS
37	Seeing Where the Stone Is Thrown by Observing a Point-Light Thrower: Perceiving the Effect of Action Is Enabled by Information, Not Motor Experience. Ecological Psychology, 2014, 26, 229-261.	0.7	8
38	Information and control strategy to solve the degrees-of-freedom problem for nested locomotion-to-reach. Experimental Brain Research, 2014, 232, 3821-3831.	0.7	5
39	Perception of relative throw-ability. Experimental Brain Research, 2014, 232, 395-402.	0.7	2
40	The 50s Cliff: Perceptuo-Motor Learning Rates across the Lifespan. PLoS ONE, 2014, 9, e85758.	1.1	23
41	Training Compliance Control Yields Improvements in Drawing as a Function of Beery Scores. PLoS ONE, 2014, 9, e92464.	1.1	7
42	Perceived 3D metric (or Euclidean) shape is merely ambiguous, not systematically distorted. Experimental Brain Research, 2013, 224, 551-555.	0.7	6
43	Felt heaviness is used to perceive the affordance for throwing but rotational inertia does not affect either. Experimental Brain Research, 2013, 224, 221-231.	0.7	11
44	Perceptuo-motor learning rate declines by half from 20s to 70/80s. Experimental Brain Research, 2013, 225, 75-84.	0.7	11
45	A Sensorimotor Approach to the Training of Manual Actions in Children With Developmental Coordination Disorder. Journal of Child Neurology, 2013, 28, 204-212.	0.7	31
46	Embodied memory: Effective and stable perception by combining optic flow and image structure Journal of Experimental Psychology: Human Perception and Performance, 2013, 39, 1638-1651.	0.7	11
47	With an Eye to Low Vision. Optometry and Vision Science, 2013, 90, 1119-1127.	0.6	20
48	The dynamics of sensorimotor calibration in reaching-to-grasp movements. Journal of Neurophysiology, 2013, 110, 2857-2862.	0.9	14
49	Active Prospective Control Is Required for Effective Sensorimotor Learning. PLoS ONE, 2013, 8, e77609.	1.1	16
50	Object recognition using metric shape. Vision Research, 2012, 69, 23-31.	0.7	12
51	Human readiness to throw: the size–weight illusion is not an illusion when picking the best objects to throw. Evolution and Human Behavior, 2011, 32, 288-293.	1.4	80
52	Discovering affordances that determine the spatial structure of reach-to-grasp movements. Experimental Brain Research, 2011, 211, 145-160.	0.7	34
53	Locomoting-to-reach: information variables and control strategies for nested actions. Experimental Brain Research, 2011, 214, 631-644.	0.7	9
54	The stability of rhythmic movement coordination depends on relative speed: the Bingham model supported. Experimental Brain Research, 2011, 215, 89-100.	0.7	31

#	Article	IF	CITATIONS
55	Learning to perceive the affordance for long-distance throwing: Smart mechanism or function learning?. Journal of Experimental Psychology: Human Perception and Performance, 2010, 36, 862-875.	0.7	56
56	Large perspective changes yield perception of metric shape that allows accurate feedforward reaches-to-grasp and it persists after the optic flow has stopped!. Experimental Brain Research, 2010, 204, 559-573.	0.7	17
57	A solution to the online guidance problem for targeted reaches: proportional rate control using relative disparity Ï". Experimental Brain Research, 2010, 205, 291-306.	0.7	21
58	Learning a coordinated rhythmic movement with task-appropriate coordination feedback. Experimental Brain Research, 2010, 205, 513-520.	0.7	39
59	Perceptual learning immediately yields new stable motor coordination Journal of Experimental Psychology: Human Perception and Performance, 2010, 36, 1508-1514.	0.7	45
60	The Dependence of Braking Strategies on Optical Variables in an Evolved Model of Visually-Guided Braking. Lecture Notes in Computer Science, 2010, , 555-564.	1.0	3
61	Learning to throw to maximum distances: Do changes in release angle and speed reflect affordances for throwing?. Human Movement Science, 2009, 28, 708-725.	0.6	15
62	The affordance of barrier crossing in young children exhibits dynamic, not geometric, similarity. Experimental Brain Research, 2009, 198, 527-533.	0.7	30
63	The coordination patterns observed when two hands reach-to-grasp separate objects. Experimental Brain Research, 2008, 184, 283-293.	0.7	45
64	Calibrating grasp size and reach distance: interactions reveal integral organization of reaching-to-grasp movements. Experimental Brain Research, 2008, 189, 211-220.	0.7	42
65	Trajectory forms as information for visual event recognition: 3-D perspectives on path shape and speed profile. Perception & Psychophysics, 2008, 70, 266-278.	2.3	7
66	Identifying the information for the visual perception of relative phase. Perception & Psychophysics, 2008, 70, 465-476.	2.3	38
67	Large continuous perspective transformations are necessary and sufficient for accurate perception of metric shape. Perception & Psychophysics, 2008, 70, 524-540.	2.3	24
68	Ontological issues in distance perception: Cue use under full cue conditions cannot be inferred from use under controlled conditions. Perception & Psychophysics, 2008, 70, 551-561.	2.3	18
69	Poor shape perception is the reason reaches-to-grasp are visually guided online. Perception & Psychophysics, 2008, 70, 1032-1046.	2.3	31
70	Is hefting to perceive the affordance for throwing a smart perceptual mechanism?. Journal of Experimental Psychology: Human Perception and Performance, 2008, 34, 929-943.	0.7	18
71	Natural prehension in trials without haptic feedback but only when calibration is allowed. Neuropsychologia, 2007, 45, 288-294.	0.7	77
72	Calibrating reach distance to visual targets Journal of Experimental Psychology: Human Perception and Performance, 2007, 33, 645-656.	0.7	52

#	Article	IF	CITATIONS
73	Perceptual coupling in rhythmic movement coordination: stable perception leads to stable action. Experimental Brain Research, 2005, 164, 517-528.	0.7	83
74	Human movement coordination implicates relative direction as the information for relative phase. Experimental Brain Research, 2005, 165, 351-361.	0.7	57
75	Calibration of Distance and Size Does Not Calibrate Shape Information: Comparison of Dynamic Monocular and Static and Dynamic Binocular Vision. Ecological Psychology, 2005, 17, 55-74.	0.7	23
76	Distortions of distance and shape are not produced by a single continuous transformation of reach space. Perception & Psychophysics, 2004, 66, 152-169.	2.3	20
77	Perspective distortion of trajectory forms and perceptual constancy in visual event identification. Perception & Psychophysics, 2004, 66, 629-641.	2.3	6
78	A Perceptually Driven Dynamical Model of Bimanual Rhythmic Movement (and Phase Perception). Ecological Psychology, 2004, 16, 45-53.	0.7	91
79	Chapter 18 Another timing variable composed of state variables: Phase perception and phase driven oscillators. Advances in Psychology, 2004, , 421-442.	0.1	30
80	Chapter 16 Why tau is probably not used to guide reaches. Advances in Psychology, 2004, 135, 371-388.	0.1	6
81	Metric 3D Structure in Visualizations. Information Visualization, 2003, 2, 51-57.	1.2	24
82	Proprioceptive Perception of Phase Variability Journal of Experimental Psychology: Human Perception and Performance, 2003, 29, 1179-1190.	0.7	46
83	Two visual systems must still perceive events. Behavioral and Brain Sciences, 2002, 25, 118-119.	0.4	2
84	Trajectory forms as a source of information about events. Perception & Psychophysics, 2002, 64, 15-31.	2.3	28
85	Causation, causal perception, and conservation laws. Perception & Psychophysics, 2002, 64, 956-968.	2.3	38
86	Functional separation of the senses is a requirement of perception/action research. Behavioral and Brain Sciences, 2001, 24, 227-228.	0.4	0
87	Dynamics, not kinematics, is an adequate basis for perception. Behavioral and Brain Sciences, 2001, 24, 709-710.	0.4	3
88	Accommodation, occlusion, and disparity matching are used to guide reaching: A comparison of actual versus virtual environments Journal of Experimental Psychology: Human Perception and Performance, 2001, 27, 1314-1334.	0.7	88
89	The effect of frequency on the visual perception of relative phase and phase variability of two oscillating objects. Experimental Brain Research, 2001, 136, 543-552.	0.7	71
90	Commentary on Jacobs and Michaels (2001): Calibration and perceptual learning in event perception. Perception & Psychophysics, 2001, 63, 572-574.	2.3	3

#	Article	IF	CITATIONS
91	Visual perception of mean relative phase and phase variability Journal of Experimental Psychology: Human Perception and Performance, 2000, 26, 1209-1220.	0.7	90
92	Distortions in definite distance and shape perception as measured by reaching without and with haptic feedback Journal of Experimental Psychology: Human Perception and Performance, 2000, 26, 1436-1460.	0.7	56
93	Visual perception of the relative phasing of human limb movements. Perception & Psychophysics, 1999, 61, 246-258.	2.3	100
94	The rate of adaptation to displacement prisms remains constant despite acquisition of rapid calibration Journal of Experimental Psychology: Human Perception and Performance, 1999, 25, 1331-1346.	0.7	31
95	The use of time and trajectory forms as visual information about spatial scale in events. Perception & Psychophysics, 1998, 60, 1175-1187.	2.3	72
96	The necessity of a perception–action approach to definite distance perception: Monocular distance perception to guide reaching Journal of Experimental Psychology: Human Perception and Performance, 1998, 24, 145-168.	0.7	185
97	Comparing measures of monocular distance perception: Verbal and reaching errors are not correlated Journal of Experimental Psychology: Human Perception and Performance, 1998, 24, 1037-1051.	0.7	86
98	Spatial frames for motor control would be commensurate with spatial frames for vision and proprioception, but what about control of energy flows?. Behavioral and Brain Sciences, 1995, 18, 773-773.	0.4	3
99	Dynamics and the orientation of kinematic forms in visual event recognition Journal of Experimental Psychology: Human Perception and Performance, 1995, 21, 1473-1493.	0.7	176
100	The Role of Perception in Timing: Feedback Control in Motor Programming and Task Dynamics. , 1995, , 129-157.		19
101	Center of mass perception and inertial frames of reference. Perception & Psychophysics, 1993, 54, 617-632.	2.3	54
102	Center of mass perception: Perturbation of symmetry. Perception & Psychophysics, 1993, 54, 633-639.	2.3	33
103	Task dynamics and resource dynamics in the assembly of a coordinated rhythmic activity Journal of Experimental Psychology: Human Perception and Performance, 1991, 17, 359-381.	0.7	56
104	The role of a behavior in evolution. Behavioral and Brain Sciences, 1990, 13, 346-347.	0.4	2
105	Hefting for a maximum distance throw: A smart perceptual mechanism Journal of Experimental Psychology: Human Perception and Performance, 1989, 15, 507-528.	0.7	149
106	Task-specific devices and the perceptual bottleneck. Human Movement Science, 1988, 7, 225-264.	0.6	190
107	Kinematic form and scaling: Further investigations on the visual perception of lifted weight Journal of Experimental Psychology: Human Perception and Performance, 1987, 13, 155-177.	0.7	159