
Qing-Long Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5805272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Nano-Sized TiC-TiB2 on Microstructure and Properties of Twin-Roll Cast Al-Cu-Mn-Zr Alloy. Metals, 2022, 12, 563.	2.3	1
2	Effect of Hot-Plate Rolling on the Microstructure Evolution and Mechanical Properties of In-Situ Nano-TiCP/Al-Mg-Si Composites. Journal Wuhan University of Technology, Materials Science Edition, 2022, 37, 513-517.	1.0	0
3	Effect of TiC Nanoparticles on the Mechanical Properties of a K465 Superalloy. Journal of Physics: Conference Series, 2021, 1838, 012015.	0.4	1
4	Synergistic effects of the TiC nanoparticles and cold rolling on the microstructure and mechanical properties of Al–Cu strips fabricated by twin-roll casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 812, 141110.	5.6	11
5	Avoiding Sabatier's conflict in bifunctional heterogeneous catalysts for the WGS reaction. CheM, 2021, 7, 1271-1283.	11.7	11
6	Effectively mitigated macro-segregation and improved tensile properties of twin-roll casting Al-Cu strips via the addition of TiC nanoparticles. Journal of Materials Processing Technology, 2021, 296, 117200.	6.3	14
7	Increased tensile strength and elongation of the Ni–Fe based polycrystalline cast superalloy via the trace addition of TiC nanoparticles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 827, 141988.	5.6	6
8	Graphene reinforced nickel-based superalloy composites fabricated by additive manufacturing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 769, 138484.	5.6	52
9	Nanoparticle additions promote outstanding fracture toughness and fatigue strength in a cast Al–Cu alloy. Materials and Design, 2020, 186, 108221.	7.0	17
10	Dry sliding friction and wear characterization of in situ TiC/Al-Cu3.7-Mg1.3 nanocomposites with nacre-like structures. Journal of Materials Research and Technology, 2020, 9, 641-653.	5.8	28
11	The lamella structure of Al-Mg-Si matrix nanocomposites with isotropically high strength. Materialia, 2020, 13, 100842.	2.7	1
12	Improved Strength-Ductility of Ti-6Al-4V Casting Alloys with Trace Addition of TiC-TiB2 Nanoparticles. Nanomaterials, 2020, 10, 2330.	4.1	1
13	Effects of cooling rate and TiC nanoparticles on the microstructure and tensile properties of an Al–Cu cast alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 790, 139737.	5.6	29
14	Application of nanoparticles in cast steel: An overview. China Foundry, 2020, 17, 111-126.	1.4	23
15	Effects of nanosized TiC and TiB2 particles on the corrosion behavior of Al-Mg-Si alloy. Corrosion Science, 2020, 167, 108479.	6.6	42
16	Simultaneously increased strength and ductility via the hierarchically heterogeneous structure of Al-Mg-Si alloys/nanocomposite. Materials Research Letters, 2020, 8, 225-231.	8.7	20
17	A novel approach to the rapid synthesis of highâ€entropy carbide nanoparticles. Journal of the American Ceramic Society, 2020, 103, 4733-4737.	3.8	14
18	A new approach for improving the elevated-temperature strength and ductility of Al–Cu–Mg–Si alloys with minor amounts of dual-phased submicron/nanosized TiB2–TiC particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138266.	5.6	36

QING-LONG ZHAO

#	Article	IF	CITATIONS
19	Microstructure refinement and strengthening mechanisms of bimodal-sized and dual-phased (TiCn-Al3Tim)/Al hybrid composites assisted ultrasonic vibration. Journal of Alloys and Compounds, 2019, 788, 1309-1321.	5.5	34
20	Effect of Preheating Temperature on the Microstructure and Tensile Properties of 6061 Aluminum Alloy Processed by Hot Rolling-Quenching. Metals, 2019, 9, 182.	2.3	8
21	Effects of nanosized TiCp on the microstructure evolution and tensile properties of an Al-Mg-Si alloy during cold rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 98-105.	5.6	45
22	Effects of nanosized TiCp dispersion on the high-temperature tensile strength and ductility of in situ TiCp/Al-Cu-Mg-Si nanocomposites. Journal of Alloys and Compounds, 2019, 774, 425-433.	5.5	26
23	Correlating oriented grain number density of recrystallisation in particle-containing aluminium alloys. Transactions of Nonferrous Metals Society of China, 2018, 28, 220-225.	4.2	9
24	Enhanced elevated-temperature mechanical properties of Al-Mn-Mg containing TiC nano-particles by pre-strain and concurrent precipitation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 718, 305-310.	5.6	19
25	Enhanced strength and ductility at room and elevated temperatures of Al-Cu alloy matrix composites reinforced with bimodal-sized TiCp compared with monomodal–sized TiCp. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 724, 368-375.	5.6	45
26	Improved ductility and toughness of an Al-Cu casting alloy by changing the geometrical morphology of dendritic grains. Materials Letters, 2018, 214, 276-279.	2.6	2
27	Improved creep resistance of Al-Cu alloy matrix composite reinforced with bimodal-sized TiCp. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 713, 190-194.	5.6	30
28	The Relationship Between Oxidation and Thermal Fatigue of Martensitic Hot-Work Die Steels. Acta Metallurgica Sinica (English Letters), 2018, 31, 692-698.	2.9	14
29	Simultaneously increasing the high-temperature tensile strength and ductility of nano-sized TiCp reinforced Al-Cu matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 717, 105-112.	5.6	55
30	Superior Cryogenic Tensile Strength and Ductility of In Situ Al–Cu Matrix Composite Reinforced with 0.3 wt% Nano‣ized TiCp. Advanced Engineering Materials, 2018, 20, 1701137.	3.5	11
31	The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials. Progress in Materials Science, 2018, 92, 284-359.	32.8	414
32	Strain-induced precipitation kinetics during non-isothermal annealing of Al-Mn alloys. Journal of Alloys and Compounds, 2018, 735, 2275-2280.	5.5	13
33	Simultaneously Enhanced Strength, Toughness and Ductility of Cast 40Cr Steels Strengthened by Trace Biphase TiCx-TiB2 Nanoparticles. Metals, 2018, 8, 707.	2.3	16
34	The superior elevated-temperature mechanical properties of Al-Cu-Mg-Si composites reinforced with in situ hybrid-sized TiCx-TiB2 particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 728, 157-164.	5.6	40
35	Improving Elevated-Temperature Strength of an Al–Mn–Si Alloy by Strain-Induced Precipitation. Metals, 2018, 8, 446.	2.3	5
36	Effects of Carbon Source on TiC Particles' Distribution, Tensile, and Abrasive Wear Properties of In Situ TiC/Al-Cu Nanocomposites Prepared in the Al-Ti-C System. Nanomaterials, 2018, 8, 610.	4.1	18

QING-LONG ZHAO

#	Article	IF	CITATIONS
37	Fabrication, microstructure refinement and strengthening mechanisms of nanosized SiCP/Al composites assisted ultrasonic vibration. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 735, 310-317.	5.6	60
38	Excellent compressive strength and ductility of Ti 5 Si 3 –coated SiC P /Al2014 composites. Journal of Alloys and Compounds, 2017, 698, 1086-1093.	5.5	5
39	Simultaneously increasing the elevated-temperature tensile strength and plasticity of in situ nano-sized TiCx/Al-Cu-Mg composites. Materials Characterization, 2017, 125, 7-12.	4.4	48
40	The microstructure and tensile property for Al2014 composites reinforced with Ti5Si3-coated SiCP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 688, 459-463.	5.6	17
41	Superior creep resistance of 0.3 wt% nano-sized TiCp/Al-Cu composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 700, 42-48.	5.6	59
42	The abrasive wear behavior of Al2014 composites reinforced with Ti5Si3-coated SiCP. Tribology International, 2017, 112, 33-41.	5.9	14
43	Superior high creep resistance of in situ nano-sized TiCx/Al-Cu-Mg composite. Scientific Reports, 2017, 7, 4540.	3.3	43
44	The Dry Sliding Wear Properties of Nano-Sized TiCp/Al-Cu Composites at Elevated Temperatures. Materials, 2017, 10, 939.	2.9	21
45	Effect of TiC nano-particles on the mechanical properties of an Al-5Cu alloy after various heat treatments. IOP Conference Series: Earth and Environmental Science, 2017, 100, 012084.	0.3	1
46	Effects of different carbon sources on the compressive properties of <i>in situ</i> high-volume-fraction TiC <i>_x</i> /2009Al composites. Powder Metallurgy, 2016, 59, 370-375.	1.7	6
47	Orientation Preference of Recrystallization in Supersaturated Aluminum Alloys Influenced by Concurrent Precipitation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 1378-1388.	2.2	22
48	The interfacial structure and mechanical properties of Ti5Si3-coated SiCP/Al2014 composites fabricated by powder metallurgy with hot pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 661, 217-221.	5.6	21
49	A Novel Approach of Using Ground CNTs as the Carbon Source to Fabricate Uniformly Distributed Nano-Sized TiCx/2009Al Composites. Materials, 2015, 8, 8839-8849.	2.9	21
50	Two-stage annealing of a cold-rolled Al–Mn–Fe–Si alloy with different microchemistry states. Journal of Materials Processing Technology, 2015, 221, 87-99.	6.3	39
51	Multi-component solid solution and cluster hardening of Al–Mn–Si alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 625, 153-157.	5.6	19
52	Influence of dispersoids on grain subdivision and texture evolution in aluminium alloys during cold rolling. Transactions of Nonferrous Metals Society of China, 2014, 24, 2072-2078.	4.2	9
53	Cluster strengthening in aluminium alloys. Scripta Materialia, 2014, 84-85, 43-46.	5.2	30
54	The effect of silicon on the strengthening and work hardening of aluminum at room temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 563, 147-151.	5.6	30

QING-LONG ZHAO

#	Article	IF	CITATIONS
55	Influence of dispersoids on microstructure evolution and work hardening of aluminium alloys during tension and cold rolling. Philosophical Magazine, 2013, 93, 2995-3011.	1.6	35
56	Modelling work hardening of aluminium alloys containing dispersoids. Philosophical Magazine, 2013, 93, 3142-3153.	1.6	25
57	Comparison of the influence of Si and Fe in 99.999% purity aluminum and in commercial-purity aluminum. Scripta Materialia, 2012, 67, 217-220.	5.2	17
58	Crystal Plasticity Calculations of Mechanical Anisotropy of Aluminium Compared to Experiments and to Yield Criterion Fittings. , 2012, , 915-920.		0
59	Effect of Si Addition on Solid Solution Hardening of Al-Mn Alloys. , 2012, , 1825-1829.		0