Kazufumi Kobashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5804538/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Porosity and size analysis of porous microparticles by centrifugal sedimentation with and without density gradient. Powder Technology, 2022, 407, 117663.	4.2	3
2	Liquid Crystalline Behaviors of Single-Walled Carbon Nanotubes in an Aqueous Sodium Cholate Dispersion. Langmuir, 2022, 38, 8899-8905.	3.5	2
3	Quantitative Surface Characterization of As-Grown and Acid-Treated Single-Walled Carbon Nanotubes: Implications for Functional Materials. ACS Applied Nano Materials, 2021, 4, 5273-5284.	5.0	9
4	N ₂ Gas Adsorption Sites of Single-Walled Carbon Nanotube Bundles: Identifying Interstitial Channels at Very Low Relative Pressure. Langmuir, 2021, 37, 9144-9150.	3.5	7
5	Virtual experimentations by deep learning on tangible materials. Communications Materials, 2021, 2, .	6.9	16
6	Carbon Nanotube Length Distribution Estimation by One-Dimensional Plasmon Resonance for Solid-State Samples. Journal of Physical Chemistry C, 2021, 125, 19362-19367.	3.1	4
7	Indentation behavior of suspended single-walled carbon nanotube films. Carbon Trends, 2021, 5, 100112.	3.0	0
8	Supercapacitor Electrodes of Blended Carbon Nanotubes with Diverse Conductive Porous Structures Enabling High Charge/Discharge Rates. ACS Applied Energy Materials, 2021, 4, 9712-9720.	5.1	11
9	Seamless control of the electrical property of carbon nanotube buckypapers by a simple mixing approach. Materials Letters, 2021, 304, 130620.	2.6	5
10	Quantitative Evidence for the Dependence of Highly Crystalline Single Wall Carbon Nanotube Synthesis on the Growth Method. Nanomaterials, 2021, 11, 3461.	4.1	5
11	Mechanically Robust Free-Standing Single-Walled Carbon Nanotube Thin Films With Uniform Mesh-Structure by Blade Coating. Frontiers in Materials, 2020, 7, .	2.4	4
12	Improved thermal stability of silicone rubber nanocomposites with low filler content, achieved by well-dispersed carbon nanotubes. Composites Communications, 2020, 22, 100482.	6.3	23
13	Outer-Surface Covalent Functionalization of Carbon Nanohorn Spherical Aggregates Assessed by Highly Spatial-Resolved Energy-Dispersive X-ray Spectrometry in Scanning Electron Microscopy. Journal of Physical Chemistry C, 2020, 124, 25142-25147.	3.1	7
14	Dispersions of High-Quality Carbon Nanotubes with Narrow Aggregate Size Distributions by Viscous Liquid for Conducting Polymer Composites. ACS Applied Nano Materials, 2020, 3, 1391-1399.	5.0	16
15	Application of Carbon Nanotubes Unravelled by Viscous Liquids. Journal of the Society of Powder Technology, Japan, 2020, 57, 446-448.	0.1	0
16	Quantitative Method for Analyzing Dendritic Carbon Nanotube Agglomerates in Dispersions Using Differential Centrifugal Sedimentation. Journal of Physical Chemistry C, 2019, 123, 21252-21256.	3.1	9
17	Classification of Commercialized Carbon Nanotubes into Three General Categories as a Guide for Applications. ACS Applied Nano Materials, 2019, 2, 4043-4047.	5.0	39
18	Nanotube length and density dependences of electrical and mechanical properties of carbon nanotube fibres made by wet spinning. Carbon, 2019, 152, 1-6.	10.3	23

Казиғимі Ковазні

#	Article	IF	CITATIONS
19	Nonuniform functional group distribution of carbon nanotubes studied by energy dispersive X-ray spectrometry imaging in SEM. Nanoscale, 2019, 11, 21487-21492.	5.6	11
20	Unravelling Effect of Carbon Nanotube Powders by Highly Viscous Liquids. Journal of the Society of Powder Technology, Japan, 2019, 56, 563-566.	0.1	1
21	A New, General Strategy for Fabricating Highly Concentrated and Viscoplastic Suspensions Based on a Structural Approach To Modulate Interparticle Interaction. Journal of the American Chemical Society, 2018, 140, 1098-1104.	13.7	9
22	Controlling the structure of arborescent carbon nanotube networks for advanced rubber composites. Composites Science and Technology, 2018, 163, 10-17.	7.8	11
23	The limitation of electrode shape on the operational speed of a carbon nanotube based micro-supercapacitor. Sustainable Energy and Fuels, 2017, 1, 1282-1286.	4.9	10
24	Designing Neat and Composite Carbon Nanotube Materials by Porosimetric Characterization. Nanoscale Research Letters, 2017, 12, 616.	5.7	12
25	A sweet spot for highly efficient growth of vertically aligned single-walled carbon nanotube forests enabling their unique structures and properties. Nanoscale, 2016, 8, 162-171.	5.6	52
26	Lithographically Integrated Microsupercapacitors for Compact, High Performance, and Designable Energy Circuits. Advanced Energy Materials, 2015, 5, 1500741.	19.5	67
27	One hundred fold increase in current carrying capacity in a carbon nanotube–copper composite. Nature Communications, 2013, 4, 2202.	12.8	422
28	Green, Scalable, Binderless Fabrication of a Single-Walled Carbon Nanotube Nonwoven Fabric Based on an Ancient Japanese Paper Process. ACS Applied Materials & Interfaces, 2013, 5, 12602-12608.	8.0	19
29	A dispersion strategy: dendritic carbon nanotube network dispersion for advanced composites. Chemical Science, 2013, 4, 727-733.	7.4	52
30	Torsion-Sensing Material from Aligned Carbon Nanotubes Wound onto a Rod Demonstrating Wide Dynamic Range. ACS Nano, 2013, 7, 3177-3182.	14.6	18
31	Hierarchical Three-Dimensional Layer-by-Layer Assembly of Carbon Nanotube Wafers for Integrated Nanoelectronic Devices. Nano Letters, 2012, 12, 4540-4545.	9.1	23
32	Mechanically Durable and Highly Conductive Elastomeric Composites from Long Single-Walled Carbon Nanotubes Mimicking the Chain Structure of Polymers. Nano Letters, 2012, 12, 2710-2716.	9.1	94
33	Macroscopic Wall Number Analysis of Single-Walled, Double-Walled, and Few-Walled Carbon Nanotubes by X-ray Diffraction. Journal of the American Chemical Society, 2011, 133, 5716-5719.	13.7	62
34	Liquid sensing properties of melt processed polypropylene/poly(ε-caprolactone) blends containing multiwalled carbon nanotubes. Composites Science and Technology, 2011, 71, 1451-1460.	7.8	50
35	Epoxy composite sheets with a large interfacial area from a high surface area-supplying single-walled carbon nanotube scaffold filler. Carbon, 2011, 49, 5090-5098.	10.3	33
36	Extracting the Full Potential of Singleâ€Walled Carbon Nanotubes as Durable Supercapacitor Electrodes Operable at 4 V with High Power and Energy Density. Advanced Materials, 2010, 22, E235-41.	21.0	582

Казиғимі Ковазні

#	Article	IF	CITATIONS
37	Liquid sensing properties of fibres prepared by melt spinning from poly(lactic acid) containing multi-walled carbon nanotubes. Composites Science and Technology, 2010, 70, 343-349.	7.8	159
38	Direct Synthesis of Wholly Aromatic Polyamides by Using Reaction-Induced Crystallization. Macromolecules, 2009, 42, 6128-6135.	4.8	12
39	Investigation of liquid sensing mechanism of poly(lactic acid)/multi-walled carbon nanotube composite films. Smart Materials and Structures, 2009, 18, 035008.	3.5	55
40	Preparation of singleâ€walled carbon nanotubesâ€induced poly(<i>p</i> â€oxybenzoyl) crystals. Journal of Polymer Science Part A, 2008, 46, 1265-1277.	2.3	2
41	Liquid sensing of melt-processed poly(lactic acid)/multi-walled carbon nanotube composite films. Sensors and Actuators B: Chemical, 2008, 134, 787-795.	7.8	99
42	Copolymer of Single-Walled Carbon Nanotubes and Poly(p-phenylene benzobisoxazole). Chemistry of Materials, 2007, 19, 291-300.	6.7	32
43	In Situ Polymerization Initiated by Single-Walled Carbon Nanotube Salts. Chemistry of Materials, 2006, 18, 4764-4767.	6.7	62
44	Soluble Ultra-Short Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2006, 128, 10568-10571.	13.7	119
45	Morphology Control of Poly(p-mercaptobenzoyl) by Modification of Oligomer End-group. Polymer Journal, 2005, 37, 471-479.	2.7	10
46	Polymer whiskers based on p-mercaptobenzoyl and p-oxybenzoyl blocks. Polymer, 2005, 46, 2191-2200.	3.8	4
47	Influence of short distance sequence regularity on preparation of poly(p-oxybenzoyl-co-p-mercaptobenzoyl) whisker. Polymer, 2004, 45, 7099-7107.	3.8	6
48	Polymer Whiskers Composed ofp-Oxybenzoyl andp-Mercaptobenzoyl Having Graded Compositions. Macromolecules, 2004, 37, 7570-7577.	4.8	5
49	Dual Self-Assembling Polycondensation ofp-Acetoxybenzoic Acid andp-Acetamidobenzoic Acid. Macromolecular Rapid Communications, 2003, 24, 190-193.	3.9	3
50	Self-Assembling Polycondensation for Preparation of Poly(p-oxybenzoyl-alt-p-mercaptobenzoyl) Whisker. Macromolecules, 2003, 36, 4268-4275.	4.8	7
51	Whisker of poly(p-oxybenzoyl-co-p-mercaptobenzoyl)?influence of sequence on polymer morphology. Polymers for Advanced Technologies, 2000, 11, 747-756.	3.2	17

4