Krzysztof Pielichowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5804286/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel Synthesis, Characterization and Amoxicillin Release Study of pH-Sensitive Nanosilica/Poly(acrylic acid) Macroporous Hydrogel with High Swelling. Materials, 2022, 15, 469.	2.9	9
2	Alginate Hydrogels with Aloe vera: The Effects of Reaction Temperature on Morphology and Thermal Properties. Materials, 2022, 15, 748.	2.9	6
3	Predicting the Mechanical Properties of RCA-Based Concrete Using Supervised Machine Learning Algorithms. Materials, 2022, 15, 647.	2.9	50
4	Chemical Transformation of Lignosulfonates to Lignosulfonamides with Improved Thermal Characteristics. Fibers, 2022, 10, 20.	4.0	11
5	Recent Advances in Polyurethane/POSS Hybrids for Biomedical Applications. Molecules, 2022, 27, 40.	3.8	21
6	Hydration and glass transition of hybrid non-isocyanate polyurethanes with POSS inclusions. Polymer, 2022, 253, 125010.	3.8	7
7	Renewable energy systems for building heating, cooling and electricity production with thermal energy storage. Renewable and Sustainable Energy Reviews, 2022, 165, 112560.	16.4	70
8	Impact of melamine and its derivatives on the properties of poly(vinyl acetate)-based composite wood adhesive. European Journal of Wood and Wood Products, 2021, 79, 177-188.	2.9	7
9	The influence of nanoparticles on phase formation and stability of liquid crystals and liquid crystals and liquid crystalline polymers. Journal of Molecular Liquids, 2021, 321, 114849.	4.9	34
10	Alginate/PVA-based hydrogel matrices with <i>Echinacea purpurea</i> extract as a new approach to dermal wound healing. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 195-206.	3.4	22
11	Nanoparticles as flame retardants in polymer materials: mode of action, synergy effects, and health/environmental risks. , 2021, , 375-415.		1
12	Thermal degradation of POSS-containing nanohybrid linear polyurethanes based on 1,6-hexamethylene diisocyanate. Thermochimica Acta, 2021, 697, 178851.	2.7	9
13	Modeling of the Kinetics of Polyoxymethylene Decomposition under Oxidative and Non-Oxidative Conditions. Materials, 2021, 14, 2281.	2.9	3
14	Complementary assessment of Î ³ -irradiated polyurethane-POSS hybrids by chemiluminescence and differential scanning calorimetry. Polymer Testing, 2021, 96, 107117.	4.8	2
15	Characterization and Combustion Behavior of Single-Use Masks Used during COVID-19 Pandemic. Materials, 2021, 14, 3501.	2.9	20
16	Recent Advances in Fabrication of Non-Isocyanate Polyurethane-Based Composite Materials. Materials, 2021, 14, 3497.	2.9	58
17	The Impact of the Preparation Method on the Properties of Orodispersible Films with Aripiprazole: Electrospinning vs. Casting and 3D Printing Methods. Pharmaceutics, 2021, 13, 1122.	4.5	24
18	PEG-POSS Star Molecules Blended in Polyurethane with Flexible Hard Segments: Morphology and Dynamics. Molecules, 2021, 26, 99.	3.8	10

#	Article	IF	CITATIONS
19	Liquid crystalline polyurethanes modified by Trisilanolisobutyl-POSS. Journal of Molecular Liquids, 2021, , 118069.	4.9	4
20	Modern biopolyamide-based materials: synthesis and modification. Polymer Bulletin, 2020, 77, 501-528.	3.3	44
21	Examining the influence of functionalized POSS on the structure and bioactivity of flexible polyurethane foams. Materials Science and Engineering C, 2020, 108, 110370.	7.3	26
22	Layer-by-Layer Deposition of Copper and Phosphorus Compounds to Develop Flame-Retardant Polyamide 6/Montmorillonite Hybrid Composites. Applied Sciences (Switzerland), 2020, 10, 5007.	2.5	7
23	Recent advances in thermal analysis and calorimetry presented at the 2nd Journal of Thermal Analysis and Calorimetry Conference and 7th V4 (Joint Czech–Hungarian–Polish–Slovakian) Thermoanalytical Conference (2019). Journal of Thermal Analysis and Calorimetry, 2020, 142, 1-4.	3.6	6
24	Physicochemical and Biological Characterisation of Diclofenac Oligomeric Poly(3-hydroxyoctanoate) Hybrids as β-TCP Ceramics Modifiers for Bone Tissue Regeneration. International Journal of Molecular Sciences, 2020, 21, 9452.	4.1	11
25	Basalt Textile-Reinforced Vinylester and Epoxy Resins for Anchors Used to Fasten Ventilated Building Facades. Applied Sciences (Switzerland), 2020, 10, 6839.	2.5	3
26	Compression-Induced Phase Transitions of Bicalutamide. Pharmaceutics, 2020, 12, 438.	4.5	13
27	Dataset on flue gas composition during pyrolysis of polyoxymethylene in a fluidised bed with the possibility of incorporating CO2. Data in Brief, 2020, 31, 105703.	1.0	4
28	The pyrolysis and combustion of polyoxymethylene in a fluidised bed with the possibility of incorporating CO2. Energy Conversion and Management, 2020, 214, 112888.	9.2	26
29	Morphology, dynamics, and order development in a thermoplastic polyurethane with melt blended POSS. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1133-1142.	2.1	18
30	Safety of the application of nanosilver and nanogold in topical cosmetic preparations. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110416.	5.0	42
31	Examining the Influence of Re–Used Nanofiller—Pyrolyzed Montmorillonite, on the Thermal Properties of Polypropylene–Based Engineering Nanocomposites. Materials, 2019, 12, 2636.	2.9	5
32	POSS-Based Polymers. Polymers, 2019, 11, 1727.	4.5	38
33	Molecular and charge mobility of a poloxamer in the bulk and as soft component in polyurethanes. Polymer, 2019, 182, 121821.	3.8	6
34	Surface Modification of Cellulose Nanocrystals with Succinic Anhydride. Polymers, 2019, 11, 866.	4.5	48
35	Thermal Stabilization of Polyoxymethylene by PEG-Functionalized Hydroxyapatite: Examining the Effects of Reduced Formaldehyde Release and Enhanced Bioactivity. Advances in Polymer Technology, 2019, 2019, 1-17.	1.7	19
36	The Synthesis and Properties of Liquid Crystalline Polyurethanes, Chemically Modified by Polyhedral Oligomericsilsesquioxanes. Molecules, 2019, 24, 4013.	3.8	9

#	Article	IF	CITATIONS
37	Bio-hybrid acrylic hydrogels containing metronidazole – loaded poly(acrylic acid-co-methyl) Tj ETQq1 1 0.78 Polymeric Materials and Polymeric Biomaterials, 2019, 68, 915-923.	4314 rgBT 3.4	Overlock 10 5
38	Molecular dynamics in polyurethane foams chemically reinforced with POSS. Polymer Bulletin, 2019, 76, 2887-2898.	3.3	6
39	The effect of surface modification of microfibrillated cellulose (MFC) by acid chlorides on the structural and thermomechanical properties of biopolyamide 4.10 nanocomposites. Industrial Crops and Products, 2018, 116, 97-108.	5.2	20
40	Rigid polyurethane foams reinforced with disilanolisobutyl POSS: Synthesis and properties. Polymers for Advanced Technologies, 2018, 29, 1879-1888.	3.2	8
41	The influence of POSS nanoparticles on selected thermal properties of polyurethane-based hybrids. Journal of Thermal Analysis and Calorimetry, 2018, 133, 289-301.	3.6	33
42	Studies on the thermal properties and flammability of polyamide 6 nanocomposites surface-modified via layer-by-layer deposition of chitosan and montmorillonite. Journal of Thermal Analysis and Calorimetry, 2018, 131, 405-416.	3.6	15
43	Thermal decomposition studies on polyurethane elastomers reinforced with polyhedral silsesquioxanes by evolved gas analysis. Polymer Degradation and Stability, 2018, 149, 129-142.	5.8	46
44	Thermal stability of cellulose nanocrystals prepared by succinic anhydride assisted hydrolysis. Thermochimica Acta, 2018, 663, 145-156.	2.7	22
45	Polyurethane/POSS Hybrid Materials. Springer Series on Polymer and Composite Materials, 2018, , 167-204.	0.7	6
46	1,2-Propanediolizobutyl POSS as a co-flame retardant for rigid polyurethane foams. Journal of Thermal Analysis and Calorimetry, 2018, 134, 1351-1358.	3.6	16
47	Thermal stability of gamma-irradiated polyurethane/POSS hybrid materials. Journal of Thermal Analysis and Calorimetry, 2018, 133, 49-54.	3.6	15
48	Polyurethanes with POSS pendent on flexible hard segments: Morphology and glass transition. Polymer, 2018, 147, 225-236.	3.8	19
49	Polymer Nanocomposites. Handbook of Thermal Analysis and Calorimetry, 2018, 6, 431-485.	1.6	13
50	Recent advances in thermal analysis and calorimetry presented at the 1st Journal of Thermal Analysis and Calorimetry Conference and 6th V4 (Joint Czech-Hungarian-Polish-Slovakian) Thermoanalytical Conference (2017). Journal of Thermal Analysis and Calorimetry, 2018, 133, 1-4.	3.6	19
51	Modification of organo-montmorillonite with disodium H-phosphonate to develop flame retarded polyamide 6 nanocomposites. Applied Clay Science, 2017, 139, 28-39.	5.2	31
52	Thermal stability and flammability of polyurethane foams chemically reinforced with POSS. Journal of Thermal Analysis and Calorimetry, 2017, 130, 155-163.	3.6	46
53	A Kinetic Analysis of the Thermo-Oxidative Degradation of PU/POSS nanohybrid Elastomers. Silicon, 2016, 8, 65-74.	3.3	13
54	Polyoxymethylene-copolymer based composites with PEG-grafted hydroxyapatite with improved thermal stability. Thermochimica Acta, 2016, 633, 98-107.	2.7	26

#	Article	IF	CITATIONS
55	Recycling of polypropylene/montmorillonite nanocomposites by pyrolysis. Journal of Analytical and Applied Pyrolysis, 2016, 119, 1-7.	5.5	16
56	Polyurethane foams chemically reinforced with POSS—Thermal degradation studies. Thermochimica Acta, 2016, 642, 95-104.	2.7	45
57	POSS Moieties with PEG Vertex Groups as Diluent in Polyurethane Elastomers: Morphology and Phase Separation. Macromolecules, 2016, 49, 6507-6517.	4.8	26
58	Segmental dynamics in hybrid polymer/POSS nanomaterials. Progress in Polymer Science, 2016, 52, 136-187.	24.7	151
59	Stabilization effects of POSS nanoparticles on gamma-irradiated polyurethane. Journal of Thermal Analysis and Calorimetry, 2016, 124, 767-774.	3.6	18
60	Bio-polyamides based on renewable raw materials. Journal of Thermal Analysis and Calorimetry, 2016, 123, 1225-1237.	3.6	65
61	Effect of silicon-based nanofillers on the foaming extrusion of thermoplastic polyurethane WpÅ,yw nanometrycznych napeÅ,niaczy opartych na zwiÄzkach krzemu na wytÅ,aczanie porujÄce termoplastycznego poliuretanu. Przemysl Chemiczny, 2016, 1, 200-204.	0.0	0
62	Effect of polyhedral oligomeric silsesquioxanes (POSS) on crystallization of polyoxytetramethylenediol Ocena wpÅ,ywu rodzaju i iloÅ›ci POSS na przebieg krystalizacji polioksytetrametylenodiolu. Przemysl Chemiczny, 2016, 1, 182-187.	0.0	1
63	Reduction of flammability of the polyamide/montmorillonite composites by addition of calcium phosphate Obniżenie palności kompozytów poliamidowych z montmorylonitem przy zastosowaniu fosforanu wapnia. Przemysl Chemiczny, 2016, 1, 176-181.	0.0	0
64	Thermal aging and accelerated weathering of <scp>PVC/MMT</scp> nanocomposites: Structural and morphological studies. Journal of Applied Polymer Science, 2015, 132, .	2.6	20
65	Thermal decomposition studies of bio-resourced polyamides by thermogravimetry and evolved gas analysis. Thermochimica Acta, 2015, 612, 40-48.	2.7	19
66	Biocomposites of polyamide 4.10 and surface modified microfibrillated cellulose (MFC): influence of processing parameters on structure and thermomechanical properties. Cellulose, 2015, 22, 2551-2569.	4.9	23
67	Reduced Phase Separation and Slowing of Dynamics in Polyurethanes with Three-Dimensional POSS-Based Cross-Linking Moieties. Macromolecules, 2015, 48, 1429-1441.	4.8	57
68	Acrylic hydrogels containing MET-loaded poly(acrylic acid-co-methyl methacrylate) micro- and nanoparticles. Journal of Polymer Research, 2015, 22, 1.	2.4	2
69	Synthesis and morphology of rigid polyurethane foams with POSS as pendant groups or chemical crosslinks. Polymers for Advanced Technologies, 2015, 26, 932-940.	3.2	27
70	Recent Developments of Foamed Polymer/Layered Silicates Nanocomposites. , 2014, , 453-479.		1
71	Phase change materials for thermal energy storage. Progress in Materials Science, 2014, 65, 67-123.	32.8	1,475
72	Degradative and morphological characterization of POSS modified nanohybrid polyurethane elastomers. Polymer Degradation and Stability, 2014, 104, 50-56.	5.8	44

#	Article	IF	CITATIONS
73	Characterization of synthesized polyurethane/montmorillonite nanocomposites foams. IOP Conference Series: Materials Science and Engineering, 2014, 64, 012039.	0.6	2
74	Effect of nanofillers on low energy impact performance of sandwich structures with nanoreinforced polyurethane foam cores. Journal of Sandwich Structures and Materials, 2014, 16, 173-194.	3.5	34
75	Nanostructured flame retardants: performance, toxicity, and environmental impact. , 2014, , 251-277.		4
76	Nanohybrid polyurethane (PUR)/functionalized silsesquioxane (PHIPOSS) systems. Part II. X-Ray structural investigations using WAXD and SAXS methods. Polimery, 2014, 59, 147-159.	0.7	6
77	Assessment of Nanoparticle Release from Polyamide 6- and Polypropylene-Silicon Composites and Cytotoxicity in Human Lung A549 Cells. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 861-870.	3.7	17
78	Novel hydrogels containing nanosilver for biomedical applications - synthesis and characterization. Journal of Polymer Research, 2013, 20, 1.	2.4	24
79	Direct and indirect effects of POSS on the molecular mobility of polyurethanes with varying segment M. Polymer, 2013, 54, 2745-2754.	3.8	46
80	The Influence of Polyhedral Oligomeric Silsequioxanes on Domain Microstructure in Polyurethane Elastomers. Silicon, 2013, 5, 205-212.	3.3	11
81	POSS along the Hard Segments of Polyurethane. Phase Separation and Molecular Dynamics. Macromolecules, 2013, 46, 7378-7386.	4.8	66
82	PVC/MMT nanocomposites. Journal of Thermal Analysis and Calorimetry, 2013, 111, 1571-1575.	3.6	18
83	The influence of multiscale fillers reinforcement into impact resistance and energy absorption properties of polyamide 6 and polypropylene nanocomposite structures. Materials & Design, 2013, 50, 244-252.	5.1	36
84	On Nanoparticles Release from Polymer Nanocomposites for Applications in Lightweight Automotive Components. Journal of Physics: Conference Series, 2013, 429, 012046.	0.4	10
85	Optimization and Scaling up of the Fabrication Process of Polymer Nanocomposites: Polyamide-6/Montmorillonite Case Study. Engineering Materials, 2013, , 75-103.	0.6	2
86	Polyurethanes modified with functionalized silsesquioxane — synthesis and properties. Polimery, 2013, 58, 783-793.	0.7	8
87	Poly(acrylic acid-co-methyl methacrylate)/metronidazole systems: synthesis and complexation. Acta Biochimica Polonica, 2013, 60, 835-8.	0.5	4
88	The Effect of Nanoclay on Dust Generation during Drilling of PA6 Nanocomposites. Journal of Nanomaterials, 2012, 2012, 1-8.	2.7	38
89	Physical characteristics of nanoparticles emitted during drilling of silica based polyamide 6 nanocomposites. IOP Conference Series: Materials Science and Engineering, 2012, 40, 012012.	0.6	17
90	Thermoplastic polymer nanocomposites with montmorillonite-Lab vs industrial scale fabrication. IOP Conference Series: Materials Science and Engineering, 2012, 40, 012007.	0.6	2

#	Article	IF	CITATIONS
91	Nanohybrid polyurethane/functionalized silsesquioxane systems. Part I. Structural investigations using FT-IR and NMR methods. Polimery, 2012, 57, 518-528.	0.7	6
92	Natural Fibre-Reinforced Polymer Composites and Nanocomposites for Automotive Applications. , 2011, , 661-700.		37
93	Kinetics of Isothermal and Nonisothermal Crystallization of Poly(ethylene oxide) (PEO) in PEO/Fatty Acid Blends. Journal of Macromolecular Science - Physics, 2011, 50, 1714-1738.	1.0	5
94	Molecular mobility and crystallinity in polytetramethylene ether glycol in the bulk and as soft component in polyurethanes. European Polymer Journal, 2011, 47, 2120-2133.	5.4	50
95	Elastomeric Nanocomposites for Aerospace Applications. Advanced Structured Materials, 2011, , 307-342.	0.5	0
96	Biodegradable PEO/celluloseâ€based solid–solid phase change materials. Polymers for Advanced Technologies, 2011, 22, 1633-1641.	3.2	66
97	Fabrication, characterization and lowâ€velocity impact testing of hybrid sandwich composites with polyurethane/layered silicate foam cores. Polymer Composites, 2011, 32, 6-13.	4.6	48
98	Thermal degradation studies of polyurethane/POSS nanohybrid elastomers. Polymer Degradation and Stability, 2010, 95, 1099-1105.	5.8	77
99	Novel biodegradable form stable phase change materials: Blends of poly(ethylene oxide) and gelatinized potato starch. Journal of Applied Polymer Science, 2010, 116, 1725-1731.	2.6	16
100	Polyurethane–POSS hybrids: Molecular dynamics studies. Polymer, 2010, 51, 709-718.	3.8	63
101	Crystallization behaviour of PEO with carbon-based nanonucleants for thermal energy storage. Thermochimica Acta, 2010, 510, 173-184.	2.7	36
102	Synthesis of Control Release KH2PO4-Based Fertilizers with PAA Matrix Modified by PEG. Molecular Crystals and Liquid Crystals, 2010, 523, 297/[869]-303/[875].	0.9	8
103	Preparation and thermal characterization of poly(ethylene oxide)/griseofulvin solid dispersions for biomedical applications. Journal of Applied Polymer Science, 2009, 111, 1690-1696.	2.6	10
104	Preparation and Properties of Biodegradable Slowâ€Release PAA Superabsorbent Matrixes for Phosphorus Fertilizers. Macromolecular Symposia, 2009, 279, 236-242.	0.7	23
105	Preparation and characterization of PVC/montmorillonite nanocomposites—A review. Journal of Vinyl and Additive Technology, 2009, 15, 61-76.	3.4	25
106	Application of thermal analysis methods for characterization of polymer/montmorillonite nanocomposites. Journal of Thermal Analysis and Calorimetry, 2008, 93, 677-687.	3.6	120
107	Microwave-assisted synthesis of carboxymethylcellulose – based polymeric surfactants. Polymer Bulletin, 2008, 60, 15-25.	3.3	25
108	Nanofillerâ€reinforced polymer nanocomposites. Polymers for Advanced Technologies, 2008, 19, 947-959.	3.2	274

KRZYSZTOF PIELICHOWSKI

#	Article	IF	CITATIONS
109	Microwave-assisted synthesis of cyclopentyltrisilanol (c-C5H9)7Si7O9(OH)3. Journal of Organometallic Chemistry, 2008, 693, 905-907.	1.8	9
110	Thermo(oxidative) stability of novel polyurethane/POSS nanohybrid elastomers. Thermochimica Acta, 2008, 478, 51-53.	2.7	82
111	PEO/fatty acid blends for thermal energy storage materials. Structural/morphological features and hydrogen interactions. European Polymer Journal, 2008, 44, 3344-3360.	5.4	64
112	Nano-hybrid polymers containing polyhedral oligosilsesquioxanes (POSS). Polimery, 2008, 53, 88-98.	0.7	13
113	Step-scan Alternating Differential Scanning Calorimetry Studies on the Crystallisation Behaviour of Low Molecular Weight Polyethylene. , 2007, , 427-434.		1
114	Epoxyâ€Based Fibre Reinforced Nanocomposites. Advanced Engineering Materials, 2007, 9, 835-847.	3.5	171
115	Polymer/montmorillonite nanocomposites with improved thermal properties. Thermochimica Acta, 2007, 453, 75-96.	2.7	544
116	Polymer/montmorillonite nanocomposites with improved thermal properties. Thermochimica Acta, 2007, 454, 1-22.	2.7	267
117	Synthesis and characterization of polyurethane microspheres and their application for immobilization of maltogenase. Polymers for Advanced Technologies, 2007, 18, 67-71.	3.2	12
118	Polyhedral Oligomeric Silsesquioxanes (POSS)-Containing Nanohybrid Polymers. Advances in Polymer Science, 2006, , 225-296.	0.8	321
119	Thermal decomposition of bisphenol A-based polyetherurethanes blown with pentane. Journal of Analytical and Applied Pyrolysis, 2006, 76, 249-253.	5.5	20
120	Thermal properties of poly(ethylene oxide)/lauric acid blends: A SSA–DSC study. Thermochimica Acta, 2006, 442, 18-24.	2.7	25
121	Influence of polyesterurethane plasticizer on the kinetics of poly(vinyl chloride) decomposition process. Journal of Thermal Analysis and Calorimetry, 2006, 83, 207-212.	3.6	28
122	Thermal characteristics of novel NaH2PO4/NaHSO4 flame retardant system for polyurethane foams. Journal of Thermal Analysis and Calorimetry, 2006, 86, 475-478.	3.6	13
123	Thermal decomposition of bisphenol A-based polyetherurethanes blown with pentane. Journal of Analytical and Applied Pyrolysis, 2006, 76, 243-248.	5.5	32
124	Polyoxymethylene-based nanocomposites with montmorillonite: an introductory study. Polimery, 2006, 51, 143-149.	0.7	22
125	Non-oxidative thermal degradation of poly(ethylene oxide): kinetic and thermoanalytical study. Journal of Analytical and Applied Pyrolysis, 2005, 73, 131-138.	5.5	125
126	Semi-interpenetrating polymer networks of polyurethane and poly(vinyl chloride). Journal of Thermal Analysis and Calorimetry, 2005, 80, 147-151.	3.6	15

#	Article	IF	CITATIONS
127	Recent developments in polymeric phase change materials for energy storage: poly(ethylene) Tj ETQq1 1 0.784	314 _. rgBT / 3.2	Overlock 10 T
128	Kinetics of decomposition of poly(vinyl chloride)/low-migration polyesterurethane plasticizer blend - a thermogravimetric study. Polimery, 2005, 50, 601-604.	0.7	2
129	Recent developments in polyurethane-based conducting composites. Journal of Materials Science, 2004, 39, 4081-4094.	3.7	82
130	TG-FTIR study of the thermal degradation of polyoxymethylene (POM)/thermoplastic polyurethane (TPU) blends. Journal of Thermal Analysis and Calorimetry, 2004, 78, 631-637.	3.6	43
131	Step-scan alternating DSC study of melting and crystallisation in poly(ethylene oxide). Polymer, 2004, 45, 1235-1242.	3.8	41
132	Segmented MDI/HMDI-based polyurethanes with lowered flammability. Journal of Applied Polymer Science, 2004, 91, 3214-3224.	2.6	20
133	Polymer Nanocomposites for Aerospace Applications: Characterization. Advanced Engineering Materials, 2004, 6, 204-210.	3.5	45
134	Polymer Nanocomposites for Aerospace Applications: Fabrication. Advanced Engineering Materials, 2004, 6, 193-203.	3.5	71
135	Phase Behavior of Poly(Ethylene Oxide) Studied by Modulatedâ€Temperature DSC—Influence of the Molecular Weight. Journal of Macromolecular Science - Physics, 2004, 43, 459-470.	1.0	8
136	New carbazole-based polymers for dye solar cells with hole-conducting polymer. Synthetic Metals, 2004, 146, 159-165.	3.9	22
137	Phase transitions of poly(ethylene oxide)/carboxylic acid blends able to storage of energy. Polimery, 2004, 49, 173-179.	0.7	2
138	Some comments on the melting and recrystallization of polyoxymethylene by high-speed and StepScan differential scanning calorimetry. Polimery, 2004, 49, 558-560.	0.7	4
139	Differential Scanning Calorimetry Study of Blends of Poly(ethylene glycol) with Selected Fatty Acids. Macromolecular Materials and Engineering, 2003, 288, 259-264.	3.6	64
140	Polymer Nanocomposites for Aerospace Applications: Properties. Advanced Engineering Materials, 2003, 5, 769-778.	3.5	223
141	Thermal degradation studies on rigid polyurethane foams blown with pentane. Journal of Applied Polymer Science, 2003, 88, 2319-2330.	2.6	54
142	Binary blends of polyethers with fatty acids: A thermal characterization of the phase transitions. Journal of Applied Polymer Science, 2003, 90, 861-870.	2.6	27
143	Morphological features and flammability of MDI/HMDI-based segmented polyurethanes containing 3-chloro-1,2-propanediol in the main chain. Polymer Degradation and Stability, 2003, 80, 327-331.	5.8	14
144	Carbazole-containing polymers: synthesis, properties and applications. Progress in Polymer Science, 2003, 28, 1297-1353.	24.7	733

#	Article	IF	CITATIONS
145	Modulated temperature DSC studies on the phase transitions of poly(ethylene oxide). Effect of temperature step. Polimery, 2003, 48, 455-457.	0.7	1
146	Blends of poly(vinyl chloride) with plasticized polyaniline. Journal of Vinyl and Additive Technology, 2002, 8, 30-35.	3.4	5
147	Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials. Polymers for Advanced Technologies, 2002, 13, 690-696.	3.2	255
148	http://en.www.ichp.pl/Application-of-modulated-differential-scanning-calorimetry Polimery, 2002, 47, 784-792.	0.7	3
149	Title is missing!. Magyar AprÃ ³ vad Közlemények, 2001, 63, 317-321.	1.4	7
150	Cure Schedule of Epoxides and Their Sulfur-Containing Derivatives. Kinetic Study. Polymer Journal, 2001, 33, 662.	2.7	2
151	Compatible poly(vinyl chloride)/chlorinated polyurethane blends: thermal characteristics. European Polymer Journal, 2000, 36, 171-181.	5.4	42
152	The kinetics of cure of epoxides and related sulphur compounds studied by dynamic DSC. Polymer, 2000, 41, 4381-4388.	3.8	38
153	Microwave-assisted preparation and thermal properties of polymethacrylates with brominated carbazolyl pendant groups. Polimery, 2000, 45, 363-367.	0.7	3
154	Rheological properties of some starch-water-sugar systems. International Journal of Food Science and Technology, 1999, 34, 371-383.	2.7	23
155	Thermal energy storage systems based on poly(vinyl chloride) blends. European Polymer Journal, 1999, 35, 27-34.	5.4	34
156	TG/FT-IR Studies of Poly(Vinyl Chloride) Blends. Magyar Apróvad Közlemények, 1999, 55, 559-563.	1.4	6
157	Binary blends of poly(vinyl chloride) stabilized by lithium acetate-thermal studies. Journal of Applied Polymer Science, 1999, 74, 2576-2587.	2.6	4
158	Simultaneous Plasticization and Doping of Polyaniline Studied by Thermal Analysis Methods. Magyar Apróvad Közlemények, 1998, 53, 633-638.	1.4	9
159	Thermal Degradation of Poly(Vinyl Chloride)/Polyaniline Conducting Blends. Magyar Apróvad Közlemények, 1998, 54, 171-175.	1.4	21
160	Post-cure effect of long-chain alkylene dimethacrylates. Angewandte Makromolekulare Chemie, 1998, 257, 59-62.	0.2	0
161	Chlorinated polyurethanes based on 2,4-toluenediisocyanate: Thermal analysis and flammability evaluation. Journal of Applied Polymer Science, 1998, 67, 1465-1471.	2.6	14
162	Characterization of the cure of some epoxides and their sulphur-containing analogues with hexahydrophthalic anhydride by DSC and TGA. Journal of Applied Polymer Science, 1998, 69, 451-460.	2.6	8

#	Article	IF	CITATIONS
163	Kinetics of gelatinization of potato starch studied by non-isothermal DSC. Carbohydrate Polymers, 1998, 35, 49-54.	10.2	21
164	TGA/FTi.r. studies on the thermal stability of poly(vinyl chloride) blends with a novel colourant and stabilizer: 3-(2,4-dichlorophenylazo)-9-(2,3-epoxypropane)carbazole. Polymer, 1998, 39, 241-244.	3.8	20
165	Polymerization of Chitosan-Acrylic Salt for Use in Dentistry. Journal of Macromolecular Science - Pure and Applied Chemistry, 1997, 34, 881-899.	2.2	9
166	Thermal Behavior and Flammability of Polyurethanes Based on Diphenylmethane-4,4′-diisocyanate and Incorporating 3-Chloro-1,2-propanediol in the Main Chain. Polymer Journal, 1997, 29, 848-853.	2.7	12
167	Thermal properties of new catalysts based on heteropolyanion-doped polyaniline. Synthetic Metals, 1997, 89, 199-202.	3.9	16
168	Polyaniline-based catalysts characterized by dynamic DSC. Applied Catalysis A: General, 1997, 161, L25-L28.	4.3	11
169	Kinetic analysis of the thermal decomposition of polyaniline. Solid State Ionics, 1997, 104, 123-132.	2.7	74
170	Thermal decomposition of the copolymers based on long-chained diol dimethacrylates and BIS-GMA/TEGDMA. Thermochimica Acta, 1997, 307, 155-165.	2.7	15
171	Thermogravimetrie als brennbarkeitsbestimmungs-methode für lineare polyurethane. Angewandte Makromolekulare Chemie, 1995, 224, 89-96.	0.2	5
172	Degradation of poly(vinyl chloride) in the presence of 9-(2,3-epoxypropane)carbazole studied by means of TGA/FTIR. Journal of Applied Polymer Science, 1995, 57, 1025-1030.	2.6	5
173	Application of thermal analysis for the investigation of polymer degradation processes. Journal of Thermal Analysis, 1995, 43, 505-508.	0.6	23
174	Kinetic analysis of the process of thermal degradation of poly-N-vinylcarbazole and its derivatives. Journal of Thermal Analysis, 1995, 43, 509-511.	0.6	1
175	Investigation of the thermal degradation process of polystyrene brominated on the ring. Journal of Thermal Analysis, 1995, 45, 1239-1243.	0.6	7
176	Investigations on thermal stability of adduct aluminium nitrate(V)-urea (1/6). Journal of Thermal Analysis, 1995, 45, 1245-1253.	0.6	4
177	Some aspects of thermal degradation of poly(vinyl chloride). Part I. Irregular structures in PVC molecules as a factor influencing thermal stability of the polymer. Polimery, 1995, 40, 257-261.	0.7	3
178	Some aspects of thermal degradation of poly(vinyl chloride). Part II. The mechanizm of degradation. Polimery, 1995, 40, 317-323.	0.7	3
179	A study of the thermal degradation of poly(vinyl chloride) in the presence of carbazole and potassium carbazole using t.g.a./FTi.r Polymer, 1994, 35, 336-338.	3.8	21
180	Thermal Analysis of Selectively-Brominated Polystyrene. Polymer Journal, 1994, 26, 822-827.	2.7	11

#	Article	IF	CITATIONS
181	The Mechanical and Thermal Properties of Polyoxymethylene (POM)/Organically Modified Montmorillonite (OMMT) Engineering Nanocomposites Modified with Thermoplastic Polyurethane (TPU) Compatibilizer. Materials Science Forum, 0, 714, 201-209.	0.3	8