Rebecca S Shapiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5803228/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulatory Circuitry Governing Fungal Development, Drug Resistance, and Disease. Microbiology and Molecular Biology Reviews, 2011, 75, 213-267.	6.6	448
2	Hsp90 Orchestrates Temperature-Dependent Candida albicans Morphogenesis via Ras1-PKA Signaling. Current Biology, 2009, 19, 621-629.	3.9	266
3	Global Gene Deletion Analysis Exploring Yeast Filamentous Growth. Science, 2012, 337, 1353-1356.	12.6	186
4	High-content CRISPR screening. Nature Reviews Methods Primers, 2022, 2, .	21.2	155
5	A CRISPR–Cas9-based gene drive platform for genetic interaction analysis in Candida albicans. Nature Microbiology, 2018, 3, 73-82.	13.3	135
6	New pathogens, new tricks: emerging, drugâ€resistant fungal pathogens and future prospects for antifungal therapeutics. Annals of the New York Academy of Sciences, 2019, 1435, 57-78.	3.8	119
7	Thermal Control of Microbial Development and Virulence: Molecular Mechanisms of Microbial Temperature Sensing. MBio, 2012, 3, .	4.1	106
8	Mapping the Hsp90 Genetic Interaction Network in Candida albicans Reveals Environmental Contingency and Rewired Circuitry. PLoS Genetics, 2012, 8, e1002562.	3.5	98
9	CRISPR-based genomic tools for the manipulation of genetically intractable microorganisms. Nature Reviews Microbiology, 2018, 16, 333-339.	28.6	88
10	A role for the bacterial GATC methylome in antibiotic stress survival. Nature Genetics, 2016, 48, 581-586.	21.4	85
11	Pho85, Pcl1, and Hms1 Signaling Governs Candida albicans Morphogenesis Induced by High Temperature or Hsp90 Compromise. Current Biology, 2012, 22, 461-470.	3.9	77
12	The Hsp90 Co-Chaperone Sgt1 Governs Candida albicans Morphogenesis and Drug Resistance. PLoS ONE, 2012, 7, e44734.	2.5	74
13	Cdc28 provides a molecular link between Hsp90, morphogenesis, and cell cycle progression in <i>Candida albicans</i> . Molecular Biology of the Cell, 2012, 23, 268-283.	2.1	61
14	A CRISPR Interference Platform for Efficient Genetic Repression in <i>Candida albicans</i> . MSphere, 2019, 4, .	2.9	49
15	Coupling temperature sensing and development. Virulence, 2010, 1, 45-48.	4.4	48
16	Linking Cellular Morphogenesis with Antifungal Treatment and Susceptibility in Candida Pathogens. Journal of Fungi (Basel, Switzerland), 2019, 5, 17.	3.5	45
17	Tuning Hsf1 levels drives distinct fungal morphogenetic programs with depletion impairing Hsp90 function and overexpression expanding the target space. PLoS Genetics, 2018, 14, e1007270.	3.5	42
18	Metabolismâ€induced oxidative stress and DNA damage selectively trigger genome instability in polyploid fungal cells. EMBO Journal, 2019, 38, e101597.	7.8	41

REBECCA S SHAPIRO

#	Article	IF	CITATIONS
19	Antimicrobial-Induced DNA Damage and Genomic Instability in Microbial Pathogens. PLoS Pathogens, 2015, 11, e1004678.	4.7	31
20	Precise Cas9 targeting enables genomic mutation prevention. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3669-3673.	7.1	28
21	Design, execution, and analysis of CRISPR–Cas9-based deletions and genetic interaction networks in the fungal pathogen Candida albicans. Nature Protocols, 2019, 14, 955-975.	12.0	25
22	Regulatory circuitry governing morphogenesis in <i>Saccharomyces cerevisiae</i> and <i>Candida albicans</i> . Cell Cycle, 2012, 11, 4294-4295.	2.6	23
23	EMT signaling: potential contribution of CRISPR/Cas gene editing. Cellular and Molecular Life Sciences, 2020, 77, 2701-2722.	5.4	22
24	CRISPR-Based Genetic Manipulation of Candida Species: Historical Perspectives and Current Approaches. Frontiers in Genome Editing, 2020, 2, 606281.	5.2	22
25	Targeting fungal membrane homeostasis with imidazopyrazoindoles impairs azole resistance and biofilm formation. Nature Communications, 2022, 13, .	12.8	21
26	Uncovering cellular circuitry controlling temperature-dependent fungal morphogenesis. Virulence, 2012, 3, 400-404.	4.4	20
27	Comprehensive genetic analysis of adhesin proteins and their role in virulence of <i>Candida albicans</i> . Genetics, 2021, 217, .	2.9	20
28	Low levels of IGFBP7 expression in high-grade serous ovarian carcinoma is associated with patient outcome. BMC Cancer, 2015, 15, 135.	2.6	19
29	Functional divergence of a global regulatory complex governing fungal filamentation. PLoS Genetics, 2019, 15, e1007901.	3.5	17
30	Mycobiome Dysbiosis in Women with Intrauterine Adhesions. Microbiology Spectrum, 2022, 10, .	3.0	14
31	FDA Approved Drug Library Screening Identifies Robenidine as a Repositionable Antifungal. Frontiers in Microbiology, 2020, 11, 996.	3.5	13
32	A Simple Nematode Infection Model for Studying <i>Candida albicans</i> Pathogenesis. Current Protocols in Microbiology, 2020, 59, e114.	6.5	9
33	Genetic interaction analysis in microbial pathogens: unravelling networks of pathogenesis, antimicrobial susceptibility and host interactions. FEMS Microbiology Reviews, 2021, 45, .	8.6	8
34	The SAGA and NuA4 component Tra1 regulates <i>Candida albicans</i> drug resistance and pathogenesis. Genetics, 2021, 219, .	2.9	7
35	A data library of <i>Candida albicans</i> functional genomic screens. FEMS Yeast Research, 2021, 21, .	2.3	5
36	The Canadian Fungal Research Network: current challenges and future opportunities. Canadian Journal of Microbiology, 2021, 67, 13-22.	1.7	4

#	Article	IF	CITATIONS
37	Experimental Evolution of Antifungal Resistance in Cryptococcus neoformans. Current Protocols in Microbiology, 2020, 59, e116.	6.5	4
38	Design and Generation of a CRISPR Interference System for Genetic Repression and Essential Gene Analysis in the Fungal Pathogen Candida albicans. Methods in Molecular Biology, 2022, 2377, 69-88.	0.9	3
39	mSphere of Influence: Evolutionary Strategies To Sensitize Drug-Resistant Pathogens. MSphere, 2019, 4,	2.9	1
40	Mucin modulates microbial morphogenesis. Nature Chemical Biology, 2022, 18, 684-686.	8.0	0