List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5802686/publications.pdf Version: 2024-02-01

VI-LUN FENC

#	Article	IF	CITATIONS
1	Kirigami Reconfigurable Gradient Metasurface. Advanced Functional Materials, 2022, 32, 2107699.	7.8	34
2	Independent Wavefront Tailoring in Full Polarization Channels by Helicityâ€Decoupled Metasurface. Annalen Der Physik, 2022, 534, 2100546.	0.9	14
3	Threeâ€dimensional lightweight metamaterial with ultraâ€wideband microwave absorption. Microwave and Optical Technology Letters, 2022, 64, 500-506.	0.9	8
4	Wideband Dual-Feed Dual-Polarized Reflectarray Antenna Using Anisotropic Metasurface. IEEE Antennas and Wireless Propagation Letters, 2022, 21, 129-133.	2.4	10
5	Wireless Communication Utilizing Berryâ€Phase Carriers. Laser and Photonics Reviews, 2022, 16, .	4.4	2
6	Kirigami Reconfigurable Gradient Metasurface (Adv. Funct. Mater. 5/2022). Advanced Functional Materials, 2022, 32, .	7.8	0
7	An Active Metamaterial Absorber With Ultrawideband Continuous Tunability. IEEE Access, 2022, 10, 25290-25295.	2.6	12
8	An Intelligent Programmable Omniâ€Metasurface. Laser and Photonics Reviews, 2022, 16, .	4.4	56
9	Arbitrary and Dynamic Poincaré Sphere Polarization Converter with a Timeâ€Varying Metasurface. Advanced Optical Materials, 2022, 10, .	3.6	52
10	Fourâ€Channel Kaleidoscopic Metasurfaces Enabled by a Singleâ€Layered Singleâ€Cell Quadâ€Band Metaâ€Ator Advanced Theory and Simulations, 2022, 5, .	^{n.} 1.3	4
11	A Dual-Polarized Reconfigurable Reflectarray Antenna Based on Dual-Channel Programmable Metasurface. IEEE Transactions on Antennas and Propagation, 2022, 70, 7403-7412.	3.1	35
12	Polarization-Selective Bifunctional Metasurface for High-Efficiency Millimeter-Wave Folded Transmitarray Antenna With Circular Polarization. IEEE Transactions on Antennas and Propagation, 2022, 70, 8184-8194.	3.1	21
13	Transmissive Metasurface With Independent Amplitude/Phase Control and Its Application to Low-Side-Lobe Metalens Antenna. IEEE Transactions on Antennas and Propagation, 2022, 70, 6526-6536.	3.1	19
14	Spatiotemporal Metasurface to Control Electromagnetic Wave Scattering. Physical Review Applied, 2022, 17, .	1.5	9
15	Multifunctional Metasurface for Broadband Reflect-Transmit-Array Antenna at 5G Millimeter-Wave Band. , 2022, , .		6
16	Freeâ€Standing Singleâ€Layer Metasurface for Efficient and Broadband Tailoring of Terahertz Wavefront. Advanced Optical Materials, 2022, 10, .	3.6	13
17	An Ultrathin Tunable Metamaterial Absorber for Lower Microwave Band Based on Magnetic Nanomaterial. Nanomaterials, 2022, 12, 2135.	1.9	17
18	Anisotropic Time-varying Metasurface for Real-time Polarization Conversion. , 2022, , .		0

#	Article	IF	CITATIONS
19	A review of recent progress on directional metasurfaces: concept, design, and application. Journal Physics D: Applied Physics, 2022, 55, 383001.	1.3	7
20	Active Cylindrical Metasurface With Spatial Reconfigurability for Tunable Backward Scattering Reduction. IEEE Transactions on Antennas and Propagation, 2021, 69, 3332-3340.	3.1	32
21	Independent dual-beam control based on programmable coding metasurface. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 178102.	0.2	3
22	Compact Multibeam Metasurface Lens Antenna with Circular Polarization for 5G Millimeter-Wave Application. , 2021, , .		0
23	Direct-modulation Wireless Communication with Real-time Programmable Metasurface. , 2021, , .		0
24	Controlling Conical Beam Carrying Orbital Angular Momentum with Transmissive Metasurface. International Journal of Antennas and Propagation, 2021, 2021, 1-10.	0.7	2
25	Quad-channel independent wavefront encoding with dual-band multitasking metasurface. Optics Express, 2021, 29, 15678.	1.7	10
26	Switchable metasurface for nearly perfect reflection, transmission, and absorption using PIN diodes. Optics Express, 2021, 29, 29320.	1.7	27
27	Angularâ€Adaptive Reconfigurable Spin‣ocked Metasurface Retroreflector. Advanced Science, 2021, 8, e2100885.	5.6	35
28	Multi-functional metasurfaces and their applications. , 2021, , .		0
29	Flexible Multiplexing of High-order Poincar $ ilde{A}$ © Sphere Beams with Reflective Metasurface. , 2021, , .		0
30	Birefringent Metasurface and Its Application to Dual-polarized Reflectarray Antenna. , 2021, , .		0
31	Paper-based Metasurface with Broadband RCS Reduction Based on Diffusion and Absorption. , 2021, , .		0
32	Birefringent Metasurface and Its Application to Dual-polarized Reflectarray Antenna. , 2021, , .		0
33	An Active Frequency Reconfigurable Epsilon-near-zero Antenna. , 2021, , .		0
34	Active Planar Van Atta Array Reflector with Switchable Retroreflection. , 2021, , .		0
35	Tunable Non-Diffraction Spoof Surface Plasmon Polaritons with Liquid Crystal Terahertz Metasurface. , 2021, , .		0
36	Bidirectional Folded Transmitarray Antenna Using Full-Space Chiral Metasurfaces. , 2021, , .		0

YI-JUN FENG

#	Article	IF	CITATIONS
37	Reconfigurable Intelligent Surface Enhancing In-door Wireless Communication. , 2021, , .		1
38	Reconfigurable Intelligent Surface for Regional Signal Enhancement. , 2021, , .		1
39	Dual-frequency Direct Wireless Communication with Programmable Meta-mirror. , 2021, , .		0
40	Transmission–Reflection-Selective Metasurface and Its Application to RCS Reduction of High-Gain Reflector Antenna. IEEE Transactions on Antennas and Propagation, 2020, 68, 1426-1435.	3.1	39
41	Active Anisotropic Coding Metasurface with Independent Realâ€Time Reconfigurability for Dual Polarized Waves. Advanced Materials Technologies, 2020, 5, 1900930.	3.0	72
42	Directional Janus Metasurface. Advanced Materials, 2020, 32, e1906352.	11.1	193
43	Dynamic Scattering Steering with Grapheneâ€Based Coding Metamirror. Advanced Optical Materials, 2020, 8, 2000683.	3.6	103
44	Out-of-band RCS Reduction of a Dipole Antenna Based on Frequency-Selective Metasurface. , 2020, , .		3
45	Ultra-broadband microwave absorption by ultra-thin metamaterial with stepped structure induced multi-resonances. Results in Physics, 2020, 18, 103320.	2.0	46
46	Airy Beam Generation: Approaching Ideal Efficiency and Ultra Wideband with Reflective and Transmissive Metasurfaces. Advanced Optical Materials, 2020, 8, 2000860.	3.6	44
47	Dual-Phase Hybrid Metasurface for Independent Amplitude and Phase Control of Circularly Polarized Wave. IEEE Transactions on Antennas and Propagation, 2020, 68, 7705-7710.	3.1	41
48	Graphene-enabled tunable multifunctional metamaterial for dynamical polarization manipulation of broadband terahertz wave. Carbon, 2020, 163, 244-252.	5.4	59
49	Differential Signal Propagation in Spoof Plasmonic Structure and its Application in Microwave Filtering Balun. IEEE Access, 2020, 8, 109009-109014.	2.6	11
50	Ultrathin Single Layer Metasurfaces with Ultraâ€Wideband Operation for Both Transmission and Reflection. Advanced Materials, 2020, 32, e1907308.	11.1	215
51	Ultrawideband Spinâ€Đecoupled Coding Metasurface for Independent Dualâ€Channel Wavefront Tailoring. Annalen Der Physik, 2020, 532, 1900472.	0.9	25
52	Programmable Coding Metasurface for Dual-Band Independent Real-Time Beam Control. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10, 20-28.	2.7	70
53	Filtering microwave differential signals through odd-mode spoof surface plasmon polariton propagation. Journal Physics D: Applied Physics, 2020, 53, 165105.	1.3	7
54	Broadband Spin-Decoupled Metasurface for Dual-Circularly Polarized Reflector Antenna Design. IEEE Transactions on Antennas and Propagation, 2020, 68, 3534-3543.	3.1	57

#	Article	IF	CITATIONS
55	Low-RCS Holographic Antenna With Enhanced Gain Based on Frequency-Selective Absorber. IEEE Transactions on Antennas and Propagation, 2020, 68, 6516-6526.	3.1	20
56	Independent Energy Allocation of Dualâ€Helical Multiâ€Beams with Spinâ€5elective Transmissive Metasurface. Advanced Optical Materials, 2020, 8, 2000342.	3.6	34
57	Graphene-enabled active metamaterial for dynamical manipulation of terahertz reflection/transmission/absorption. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126840.	0.9	20
58	Binary geometric phase metasurface for ultra-wideband microwave diffuse scatterings with optical transparency. Optics Express, 2020, 28, 12638.	1.7	25
59	Direct routing of intensity-editable multi-beams by dual geometric phase interference in metasurface. Nanophotonics, 2020, 9, 2977-2987.	2.9	27
60	Reconfigurable Coding Metasurface for Dual-band Dynamic Near-field Microwave Focusing. , 2020, , .		0
61	Polarization- and Frequency-Controlled Multifunctional Coding Metasurface. , 2020, , .		1
62	Asymmetric Harmonic Manipulation of Electromagnetic Wave by 2-bit Time-varying Coding Metasurface. , 2020, , .		1
63	An Ultra-Wideband Tunable Absorber based on Metamaterial for UHF Band. , 2020, , .		Ο
64	Design of a Frequency-Tunable Frequency-Selective Surface with High-Selectivity. , 2020, , .		1
65	Harmonic Manipulation of Microwave by Time-varying Polarization-converting Metasurface. , 2020, , .		1
66	Achieving Directive Radiation and Broadband Microwave Absorption by an Anisotropic Metasurface. IEEE Access, 2019, 7, 93919-93926.	2.6	6
67	Broadband Polarization-Conversion Metasurface for a Cassegrain Antenna with High Polarization Purity. Physical Review Applied, 2019, 12, .	1.5	48
68	Switchable Broadband Dual-Polarized Frequency-Selective Rasorber/Absorber. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 2508-2512.	2.4	68
69	Ultrathin L-band Microwave Tunable Metamaterial Absorber. , 2019, , .		2
70	Broadband microwave metamaterial absorber with lumped resistor loading. EPJ Applied Metamaterials, 2019, 6, 1.	0.8	29
71	Multi-octave microwave absorption via conformal metamaterial absorber with optical transparency. Journal Physics D: Applied Physics, 2019, 52, 335101.	1.3	44
72	Dual-Helicity Decoupled Coding Metasurface for Independent Spin-to-Orbital Angular Momentum Conversion. Physical Review Applied, 2019, 11, .	1.5	137

#	Article	IF	CITATIONS
73	A Low Profile Broadband Cassegrain Reflectarray. , 2019, , .		1
74	Broadband Microwave Absorber by direct drawing Metamaterial on Paper. , 2019, , .		1
75	Ultra-Thin Conformal Metasurface for Backward RCS Reduction of Large Cylindrical Object. , 2019, , .		2
76	Angular-Selective Multichannel Reflector by Optimizing Phase Distribution of Cascaded Metasurfaces. , 2019, , .		0
77	Composite Strategy for Backward-Scattering Reduction of a Wavelength-Scale Cylindrical Object by an Ultrathin Metasurface. Physical Review Applied, 2019, 12, .	1.5	6
78	Electromagnetic polarization conversion based on Huygens' metasurfaces with coupled electric and magnetic resonances. Optics Express, 2019, 27, 11006.	1.7	20
79	Multi-functional coding metasurface for dual-band independent electromagnetic wave control. Optics Express, 2019, 27, 19196.	1.7	24
80	Electromagnetic properties of magnetic epsilon-near-zero medium with dielectric dopants. Optics Express, 2019, 27, 20073.	1.7	13
81	Understanding Genotypes and Phenotypes of the Mutations in Voltage- Gated Sodium Channel α Subunits in Epilepsy. CNS and Neurological Disorders - Drug Targets, 2019, 18, 266-272.	0.8	4
82	Graphene-based Terahertz metasurface Salisbury screen with tunable wideband absorption. , 2019, , .		0
83	Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial. Carbon, 2018, 133, 170-175.	5.4	104
84	Broadband Tunable Metamaterial Absorber with Active Lumped Diodes. , 2018, , .		1
85	Manipulating Propagation and Scattering of Microwave by Optically Transparent Metasurface. , 2018, ,		1
86	Reflective 1-bit Coding Metasurface for Frequency Selective RCS Reduction. , 2018, , .		1
87	Optically Transparent Metasurfaces for Controlling Microwave Scattering and Absorption. , 2018, , .		2
88	Combining Frequency-Selective Scattering and Specular Reflection Through Phase-Dispersion Tailoring of a Metasurface. Physical Review Applied, 2018, 10, .	1.5	41
89	Bifunctional metasurface for independently generating vortex beams and pencil beams. , 2018, , .		0
90	Dynamic control of microwave with tunable metamaterial and metasurface. , 2018, , .		1

#	Article	IF	CITATIONS
91	Broadening the Bandwidth of the Electromagnetic Metamaterial Absorber. , 2018, , .		1
92	A Broadband Metamaterial Microwave Absorber Utilizing Both Magnetic and Electric Resonances. , 2018, , .		3
93	Filtering Balun Based on Spoof Surface Plasmon Polariton. , 2018, , .		2
94	Ultra-Wideband Microwave Absorption by Design and Optimization of Metasurface Salisbury Screen. IEEE Access, 2018, 6, 26843-26853.	2.6	51
95	Broadband microwave absorption utilizing water-based metamaterial structures. Optics Express, 2018, 26, 8522.	1.7	84
96	Full control of conical beam carrying orbital angular momentum by reflective metasurface. Optics Express, 2018, 26, 20990.	1.7	29
97	Generation of conical beam by reflective metasurface. , 2018, , .		4
98	Optically transparent metasurface Salisbury screen with wideband microwave absorption. Optics Express, 2018, 26, 34384.	1.7	60
99	The Yin and Yang of BK Channels in Epilepsy. CNS and Neurological Disorders - Drug Targets, 2018, 17, 272-279.	0.8	20
100	A Reconfigurable Active Huygens' Metalens. Advanced Materials, 2017, 29, 1606422.	11.1	470
101	Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial. Scientific Reports, 2017, 7, 42802.	1.6	68
102	Bi-functional metasurface controlling electromagnetic wave scattering of differently polarized wave. , 2017, , .		0
103	Designing metasurface through surface impedance mapping and equivalent circuit model. , 2017, , .		0
104	Terahertz beam switching by electrical control of graphene-enabled tunable metasurface. Scientific Reports, 2017, 7, 14147.	1.6	20
105	A broadband reflective-type half-wave plate employing optical feedbacks. Scientific Reports, 2017, 7, 9103.	1.6	8
106	Polarization-dependent bi-functional metasurface for directive radiation and diffusion-like scattering. AIP Advances, 2017, 7, .	0.6	11
107	Selective wave-transmitting electromagnetic absorber through composite metasurface. AIP Advances, 2017, 7, 115017.	0.6	7

108 A tunable water-based metamaterial microwa absorber., 2017,,.

#	Article	IF	CITATIONS
109	Geometric phase coded microwave metasurface for ultra-wideband radar cross section reduction. , 2017, , .		Ο
110	Dual-polarization absorptive/transmissive frequency-selective surface utilizing composite metamaterial. , 2017, , .		0
111	Coding metasurface for broadband microwave scattering reduction with optical transparency. Optics Express, 2017, 25, 5571.	1.7	143
112	Metasurface Salisbury screen: achieving ultra-wideband microwave absorption. Optics Express, 2017, 25, 30241.	1.7	61
113	Tunable ultra-thin P-band absorber based on permeability-near-zero metamaterial. , 2017, , .		1
114	Achieving flexible low-scattering metasurface based on randomly distribution of meta-elements. Optics Express, 2016, 24, 27849.	1.7	60
115	Water droplets: Toward broadband metamaterial microwave absorber. , 2016, , .		2
116	Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering. Scientific Reports, 2016, 6, 35968.	1.6	113
117	An ultralow-profile lens antenna based on all-dielectric metasurfaces. , 2016, , .		3
118	Design of transmission-type coding metasurface and its application of beam forming. Applied Physics Letters, 2016, 109, .	1.5	42
119	Flexible low-scattering metasurface utilizing randomly distributed elements of variable sizes. , 2016, , .		2
120	Selective wave-transmitting absorber through combined metasurfaces. , 2016, , .		0
121	Spoof surface plasmon-based bandpass filter with extremely wide upper stopband. Chinese Physics B, 2016, 25, 034101.	0.7	18
122	Active metasurfaces for dynamic electromagnetic wave control. , 2016, , .		0
123	Broadband microwave metamaterial absorber made of randomly distributed metallic loops. , 2016, , .		3
124	Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution. Scientific Reports, 2016, 6, 26875.	1.6	57
125	Manipulating electromagnetic wave in subwavelength using infinity-anisotropic metamaterials. , 2016, , .		0
126	Backward spoof surface wave in plasmonic metamaterial of ultrathin metallic structure. Scientific Reports, 2016, 6, 20448.	1.6	40

#	Article	IF	CITATIONS
127	Nearly octave bandwidth microwave absorber with resistance loaded metamaterial. , 2015, , .		0
128	Beam refraction with an isotropic and ultrathin Huygens' metasurface. , 2015, , .		0
129	A broadband wide-angle polarizer through field transformation. , 2015, , .		0
130	Metamaterials: Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials (Advanced Optical Materials 10/2015). Advanced Optical Materials, 2015, 3, 1373-1373.	3.6	11
131	Highly-confined and low-loss spoof surface plasmon polaritons structure with periodic loading of trapezoidal grooves. AIP Advances, 2015, 5, .	0.6	44
132	A Wide-angle Multi-Octave Broadband Waveplate Based on Field Transformation Approach. Scientific Reports, 2015, 5, 17532.	1.6	16
133	Allosteric interactions between receptor site 3 and 4 of voltage-gated sodium channels: a novel perspective for the underlying mechanism of scorpion sting-induced pain. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2015, 21, 42.	0.8	6
134	Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials. Advanced Optical Materials, 2015, 3, 1374-1380.	3.6	175
135	Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation. Optics Express, 2015, 23, 27230.	1.7	69
136	Free space electromagnetic wave modulation using tunable metasurface absorber. , 2015, , .		2
137	Gain and bandwidth enhanced patch antenna with phase compensation metasurface. , 2015, , .		2
138	A reflective wide-angle broadband polarizer based on field transformation. , 2015, , .		0
139	Beam scanning of orbital angular momentum electromagnetic wave using annular phased array. , 2015, , \cdot		1
140	Microwave absorber based on permeability-near-zero metamaterial made of Swiss roll structures. Journal Physics D: Applied Physics, 2015, 48, 455304.	1.3	12
141	An ultrathin microwave Huygens' metasurface lens. , 2015, , .		7
142	One-way absorber for linearly polarized electromagnetic wave utilizing composite metamaterial. Optics Express, 2015, 23, 4658.	1.7	19
143	A frequency and bandwidth tunable metamaterial absorber in x-band. Journal of Applied Physics, 2015, 117, .	1.1	80
144	Passive Metasurface for Reflectionless and Arbitary Control of Electromagnetic Wave Transmission. IEEE Transactions on Antennas and Propagation, 2015, 63, 5500-5511.	3.1	88

#	Article	IF	CITATIONS
145	Improving microwave antenna gain and bandwidth with phase compensation metasurface. AIP Advances, 2015, 5, .	0.6	51
146	Lipid bilayer modification alters the gating properties and pharmacological sensitivity of voltage-gated sodium channel. Acta Physiologica Sinica, 2015, 67, 271-82.	0.5	3
147	Electromagnetic wave lenses and reflectors designed with transformation electromagnetics. , 2014, , .		1
148	Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Optics Express, 2014, 22, 22743.	1.7	336
149	Electromagnetic wave deflection and backward scattering reduction by flat meta-surfaces. , 2014, , .		5
150	Dynamic control of electromagnetic wave polarization and phase through active metasurfaces. , 2014, , ,		5
151	Polarization selective one-way microwave absorber based on composite metamaterial. , 2014, , .		0
152	Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures. Optics Express, 2014, 22, 20107.	1.7	129
153	Frequency-selective microwave polarization rotator using substrate-integrated waveguide cavities. Chinese Physics B, 2014, 23, 034101.	0.7	25
154	Tunable, switchable, and one-way electromagnetic wave absorbers based on metamaterial structures. , 2014, , .		1
155	Effect of loss and coupling on the resonance of metamaterial: An equivalent circuit approach. Science China Information Sciences, 2014, 57, 1-8.	2.7	3
156	Ultrathin microwave absorber in wireless communication band made of Swiss roll metamaterial structure. , 2014, , .		3
157	Ultra-thin spoof surface plasmonic structure and its application to bandpass filter design. , 2014, , .		0
158	Dual-band asymmetric electromagnetic wave transmission for dual polarizations in chiral metamaterial structure. Applied Physics B: Lasers and Optics, 2014, 117, 527-531.	1.1	20
159	Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface. Scientific Reports, 2014, 4, .	1.6	93
160	Design and realization of planar reflectors through transformation optics. , 2013, , .		0
161	Coupling surface plasmon waves across gaps in a dielectric/metal interface by transformation optics. Applied Physics B: Lasers and Optics, 2013, 112, 1-6.	1.1	3
162	Analog study of near-field focusing and subwavelength imaging with nonlinear transmission-line metamaterial. Science China Information Sciences, 2013, 56, 1-8.	2.7	0

#	Article	IF	CITATIONS
163	Controllable metamaterial absorbers. , 2013, , .		1
164	Designing retrodirective reflector on a planar surface by transformation optics. AIP Advances, 2013, 3, .	0.6	7
165	Manipulating surface plasmon waves by transformation optics: Design examples of a beam squeezer, bend, and omnidirectional absorber. Chinese Physics B, 2013, 22, 034102.	0.7	7
166	High-order modes of spoof surface plasmonic wave transmission on thin metal film structure. Optics Express, 2013, 21, 31155.	1.7	111
167	Active impedance metasurface with full 360° reflection phase tuning. Scientific Reports, 2013, 3, 3059.	1.6	143
168	Experimental demonstration of the three phase shifted DFB semiconductor laser based on Reconstruction-Equivalent-Chirp technique. Optics Express, 2012, 20, 17374.	1.7	21
169	Experimental demonstration of eight-wavelength distributed feedback semiconductor laser array using equivalent phase shift. Optics Letters, 2012, 37, 3315.	1.7	71
170	Manipulating electromagnetic wave propagation, absorption and polarization with metamaterials. , 2012, , .		1
171	Fabry-Perót cavity antenna with beam switching. , 2012, , .		2
172	Designing planar electromagnetic wave reflectors through transformation optics. , 2012, , .		0
173	SEMIAUTOMATA AND NEAR RINGS. , 2012, , .		2
174	Asymmetric Transmission Of Linearly Polarized Electromagnetic Wave Through Chiral Metamaterial Structure. Journal of Electromagnetic Waves and Applications, 2012, 26, 1192-1202.	1.0	21
175	One-way electromagnetic energy absorber base on composite metamaterial slabs. , 2012, , .		Ο
176	Assembling optically active and nonactive metamaterials with chiral units. AIP Advances, 2012, 2, 041413.	0.6	6
177	Diode-like asymmetric transmission of linearly polarized waves through twisted split-ring metamaterial structure. , 2012, , .		1
178	Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures. Physical Review B, 2012, 85, .	1.1	284
179	Design of Dual-Polarized Frequency Selective Structure With Quasi-Elliptic Bandpass Response. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 297-300.	2.4	13
180	Bandwidth enhanced metamaterial absorber at terahertz frequency. , 2012, , .		2

11

#	Article	IF	CITATIONS
181	Improved λ/4 phase-shifted DFB semiconductor laser with spatial hole burning compensation using grating chirp. Optics and Laser Technology, 2012, 44, 2443-2448.	2.2	5
182	Transient investigation of sub-wavelength electromagnetic wave focusing through transmission line metamaterials. , 2011, , .		0
183	An Anti-Symmetric-Sample Grating Structure for Improving the Reconstruction-Equivalent-Chirp Technology. IEEE Photonics Technology Letters, 2011, 23, 1337-1339.	1.3	8
184	Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials. Journal Physics D: Applied Physics, 2011, 44, 185102.	1.3	37
185	Broad band invisibility cloak made of normal dielectric multilayer. Applied Physics Letters, 2011, 99, 154104.	1.5	36
186	Slow-light propagation in a cylindrical dielectric waveguide with metamaterial cladding. Journal Physics D: Applied Physics, 2011, 44, 475103.	1.3	14
187	Effects of GeO2 on the thermal stability and optical properties of Er3+/Yb3+-codoped oxyfluoride tellurite glasses. Materials Chemistry and Physics, 2011, 126, 786-790.	2.0	33
188	Explicit expression of the pseudo-Brewster angle for anisotropic metamaterials. Optics Communications, 2011, 284, 2678-2682.	1.0	5
189	POLARIZATION INSENSITIVE METAMATERIAL ABSORBER WITH WIDE INCIDENT ANGLE. Progress in Electromagnetics Research, 2010, 101, 231-239.	1.6	183
190	DUAL BAND SWITCHABLE METAMATERIAL ELECTROMAGNETIC ABSORBER. Progress in Electromagnetics Research B, 2010, 24, 121-129.	0.7	74
191	Manipulating electromagnetic radiation through metamaterial structures designed by coordinate transformation. , 2010, , .		1
192	Polarization modulation by tunable electromagnetic metamaterial reflector/absorber. Optics Express, 2010, 18, 23196.	1.7	88
193	Simplified ground plane invisibility cloak by multilayer dielectrics. Optics Express, 2010, 18, 24477.	1.7	22
194	Dark Schrödinger solitons and harmonic generation in left-handed nonlinear transmission line. Journal of Applied Physics, 2010, 107, 094907.	1.1	30
195	The Pseudo-Brewster Angles for anisotropic metamaterials. , 2010, , .		0
196	Switchable metamaterial reflector/absorber for different polarized electromagnetic waves. Applied Physics Letters, 2010, 97, .	1.5	228
197	Ground plane invisibility cloak composed of beam modulation blocks. , 2010, , .		0
198	Compensated Anisotropic Metamaterials: Manipulating Sub-wavelength Images. , 2010, , 155-181.		0

#	Article	IF	CITATIONS
199	Slow wave propagation in a dielectric cylindrical waveguide with anisotropic metamaterial cladding. , 2009, , .		7
200	Infrared carpet cloak designed with uniform silicon grating structure. Applied Physics Letters, 2009, 95, .	1.5	48
201	Schrödinger solitons and harmonic generation in short left-handed nonlinear transmission line metamaterial. , 2009, , .		2
202	Achieving both wideband mitigation of ground bounce noise and good signal integrity by novel period structure. Electronics Letters, 2009, 45, 158.	0.5	2
203	Planar Metamaterial Microwave Absorber for all Wave Polarizations. Chinese Physics Letters, 2009, 26, 114102.	1.3	33
204	Compensating loss with gain in slow-light propagation along slab waveguide with anisotropic metamaterial cladding. Optics Letters, 2009, 34, 3869.	1.7	14
205	Stopping light by an air waveguide with anisotropic metamaterial cladding. Optics Express, 2009, 17, 170.	1.7	73
206	Extraordinary transmission in planar waveguide loaded with anisotropic metamaterials. Journal of Applied Physics, 2009, 105, .	1.1	9
207	Spherical cloaking with homogeneous isotropic multilayered structures. Physical Review E, 2009, 79, 047602.	0.8	115
208	Ultraâ€wideband bandpass filter using simplified leftâ€handed transmission line structure. Microwave and Optical Technology Letters, 2008, 50, 2758-2762.	0.9	20
209	Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure. Applied Physics Letters, 2008, 92, .	1.5	47
210	Slow and frozen waves in a planar air waveguide with anisotropic metamaterial cladding. , 2008, , .		2
211	Microwave absorption properties of anisotropic materials realized by multi-layered film structures. , 2008, , .		2
212	Sub-wavelength image manipulating through compensated anisotropic metamaterial prisms. Optics Express, 2008, 16, 18057.	1.7	14
213	Compensated anisotropic metamaterials: Manipulating sub-wavelength images. , 2008, , .		0
214	Light trapper by tapered air core in anisotropic metamaterial. , 2008, , .		0
215	Designing the coordinate transformation function for non-magnetic invisibility cloaking. Journal Physics D: Applied Physics, 2008, 41, 215504.	1.3	15
216	Stopped electromagnetic wave in an air waveguide with anisotropic metamaterial cladding. , 2008, , .		0

#	Article	IF	CITATIONS
217	Extraordinary transmission with evanescent wave enhancement in planar waveguide loaded with anisotropic metamaterials. , 2008, , .		1
218	Electromagnetic beam modulation through transformation optical structures. New Journal of Physics, 2008, 10, 115027.	1.2	16
219	Bandpass filters utilizing simplified left-handed transmission line structure. , 2008, , .		1
220	Electromagnetic beam modulation and planar invisibility cloak through transformation optical structures. , 2008, , .		0
221	Planar sub-wavelength cavity resonator containing a bilayer of anisotropic metamaterials. Journal Physics D: Applied Physics, 2007, 40, 1821-1826.	1.3	6
222	Subwavelength imaging with compensated anisotropic bilayers realized by transmission-line metamaterials. Physical Review B, 2007, 75, .	1.1	16
223	A Novel Electromagnetic Band-gap Structure for Ultra-Wide Band Suppression of Ground Bounce Noise. , 2007, , .		2
224	Electromagnetic cloaking by layered structure of homogeneous isotropic materials. Optics Express, 2007, 15, 11133.	1.7	242
225	Optical polarization beam splitting through anisotropic metamaterial slab realized by layered metal-dielectric system. , 2007, , .		0
226	Sub-diffraction Focusing through Compensated Bilayer of Anisotropic Metamaterials: Theoretical Analysis and Experimental Verification. , 2007, , .		0
227	A self-similar fractal electromagnetic band-gap structure in the power plane with broadband suppression of ground bounce noise. Microwave and Optical Technology Letters, 2007, 49, 190-192.	0.9	6
228	Omni-Directional Microstrip Ring Antenna Based On a Simplified Left-Handed Transmission Line Structure. , 2006, , .		3
229	Loss Effect on Sub-wavelength Imaging by Compensated Bilayer of Anisotropic Metamaterials. , 2006, , .		0
230	Transmission line realization of subwavelength resonator formed by a pair of conventional and LHM slabs. Journal of Zhejiang University: Science A, 2006, 7, 76-80.	1.3	2
231	Negative refraction and partial focusing in an anisotropic metamaterial realized by a loaded transmission line network. Journal Physics D: Applied Physics, 2006, 39, 213-219.	1.3	11
232	Anomalous reflection and refraction in anisotropic metamaterial realized by periodically loaded transmission line network. Journal of Applied Physics, 2006, 100, 114901.	1.1	11
233	Subwavelength rectangular cavity partially filled with left-handed materials. Chinese Physics B, 2006, 15, 1154-1160.	1.3	12
234	Subwavelength Parallel Plate Resonator Filled with Bilayer of Anisotropic Metamaterials. , 2006, , .		0

#	Article	IF	CITATIONS
235	Guided Modes in a Planar Air Waveguide with Anisotropic Metamaterial Cladding. , 2006, , .		0
236	Loss and retardation effect on subwavelength imaging by compensated bilayer of anisotropic metamaterials. Journal of Applied Physics, 2006, 100, 124910.	1.1	4
237	High Impedance Reflection at Surface of Anisotropic Metamaterial Realized by Loaded Transmission-line Networks. , 2006, , .		0
238	Experimental Verification of Sub-diffraction Imaging by Compensated Bilayer of Transmission Line Metamaterials. , 2006, , .		0
239	Temperature-dependent local electromagnetic characterization of electronic materials by scanning microwave near-field technique. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 122, 49-54.	1.7	0
240	Directive electromagnetic radiation of a line source scattered by a conducting cylinder coated with left-handed metamaterial. Microwave and Optical Technology Letters, 2005, 47, 274-279.	0.9	22
241	Electromagnetic wave propagation in anisotropic metamaterials created by a set of periodic inductor-capacitor circuit networks. Physical Review B, 2005, 72, .	1.1	26
242	Electromagnetic wave localization using a left-handed transmission-line superlens. Physical Review B, 2005, 72, .	1.1	23
243	Characterization and modelling of MOSFET operating at cryogenic temperature for hybrid superconductor-CMOS circuits. Semiconductor Science and Technology, 2004, 19, 1381-1385.	1.0	17
244	Implementation and low speed test of ultra-fast interface circuits for Josephson-CMOS hybrid memories. Physica C: Superconductivity and Its Applications, 2003, 392-396, 1467-1471.	0.6	1
245	Spatially resolved characterization of the microwave properties of superconducting thin films by low temperature microwave scanning near-field microscopy. IEEE Transactions on Applied Superconductivity, 2003, 13, 2901-2904.	1.1	4
246	Josephson-CMOS hybrid memory with ultra-high-speed interface circuit. IEEE Transactions on Applied Superconductivity, 2003, 13, 467-470.	1.1	19
247	Hybrid Josephson-CMOS memory: a solution for the Josephson memory problem. Superconductor Science and Technology, 2002, 15, 1669-1674.	1.8	10
248	Probing the local microwave properties of superconducting thin films by a scanning microwave near-field microscope. Superconductor Science and Technology, 2002, 15, 1771-1774.	1.8	1
249	Experimental Study of the Plasma Fluorination of Y-Ba-Cu-O Thin Films. Chinese Physics Letters, 2002, 19, 1340-1343.	1.3	0
250	Epitaxial growth of YBa2Cu3O7/CeO2/YSZ thin films on silicon-on-insulator substrates. Superconductor Science and Technology, 2002, 15, 320-323.	1.8	11
251	Nondestructive evaluation of the dielectric properties of the substrate materials for high-Tcsuperconducting microwave devices. Superconductor Science and Technology, 2002, 15, 390-394.	1.8	3
252	Rapid single flux quantum pseudo random generator. Science Bulletin, 2001, 46, 170-173.	1.7	0

#	Article	IF	CITATIONS
253	Local microwave characterization of metal films using a scanning microwave near-field microscope. Solid State Communications, 2001, 119, 133-135.	0.9	9
254	Local microwave surface resistance variations of the YBaCuO thin films patterned by selective laser irradiation and plasma fluorination. IEEE Transactions on Applied Superconductivity, 2001, 11, 123-126.	1.1	1
255	Simulation of the sub-harmonic SIS mixer. Physica C: Superconductivity and Its Applications, 2000, 341-348, 2717-2718.	0.6	0
256	Nondestructive imaging of the microwave properties of superconducting thin film devices with a scanning microwave near-field microscope. Physica C: Superconductivity and Its Applications, 2000, 341-348, 2651-2652.	0.6	3
257	C -Axis Current-voltage Characteristics of Mesa Structures on Bi 2 Sr 2 CaCu 2 O 8+δ Single Crystals Fabricated by a Simple Technique Without Photolithography. Chinese Physics Letters, 1999, 16, 686-688.	1.3	2
258	HTS microwave devices and subsystems with pulse tube refrigerators. IEEE Transactions on Applied Superconductivity, 1999, 9, 3569-3572.	1.1	1
259	Bi/sub 2/Sr/sub 2/CaCu/sub 2/O/sub 8+Î′/ intrinsic Josephson junctions fabricated by a simple technique without photolithography. IEEE Transactions on Applied Superconductivity, 1999, 9, 4527-4529.	1.1	1
260	Optical Properties of an Ionic-Type Phononic Crystal. Science, 1999, 284, 1822-1824.	6.0	137
261	Harmonic mixing of Bi2Sr2CaCu2O8+x intrinsic junction at millimeter waveband. Science Bulletin, 1999, 44, 1191-1194.	1.7	0
262	High T/sub c/ superconducting step-edge junctions and their properties in millimeter-wave band. IEEE Transactions on Applied Superconductivity, 1995, 5, 2798-2800.	1.1	1
263	The critical current density distribution in a TIBaCaCuO thin film ring resonator. Physica C: Superconductivity and Its Applications, 1994, 235-240, 3073-3074.	0.6	0
264	The critical current density distribution in a TlBaCaCuO thin film ring resonator. Solid State Communications, 1994, 92, 375-376.	0.9	0
265	Spatial variation of the critical current density of the highTcsuperconducting thin films. Journal of Applied Physics, 1992, 72, 5350-5353.	1.1	10
266	Directive electromagnetic scattering by an infinite conducting cylinder coated with left-handed material. , 0, , .		0
267	Wideband low reflection backward scattering with an inter-band transparent window by phase tailoring of a frequency-selective metasurface. Journal Physics D: Applied Physics, 0, , .	1.3	3