List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5801515/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inactivating a Cellular Intrinsic Immune Defense Mediated by Daxx Is the Mechanism through Which the Human Cytomegalovirus pp71 Protein Stimulates Viral Immediate-Early Gene Expression. Journal of Virology, 2006, 80, 3863-3871.	3.4	258
2	Consensus on the role of human cytomegalovirus in glioblastoma. Neuro-Oncology, 2012, 14, 246-255.	1.2	245
3	Phosphorylation of Retinoblastoma Protein by Viral Protein with Cyclin-Dependent Kinase Function. Science, 2008, 320, 797-799.	12.6	203
4	Proteasome-dependent, ubiquitin-independent degradation of the Rb family of tumor suppressors by the human cytomegalovirus pp71 protein. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3263-3268.	7.1	181
5	Human Cytomegalovirus pp71 Stimulates Cell Cycle Progression by Inducing the Proteasome-Dependent Degradation of the Retinoblastoma Family of Tumor Suppressors. Molecular and Cellular Biology, 2003, 23, 1885-1895.	2.3	162
6	Tegument Proteins of Human Cytomegalovirus. Microbiology and Molecular Biology Reviews, 2008, 72, 249-265.	6.6	145
7	Human Cytomegalovirus Gene Expression Is Silenced by Daxx-Mediated Intrinsic Immune Defense in Model Latent Infections Established In Vitro. Journal of Virology, 2007, 81, 9109-9120.	3.4	128
8	Significant Association of Multiple Human Cytomegalovirus Genomic Loci with Glioblastoma Multiforme Samples. Journal of Virology, 2012, 86, 854-864.	3.4	126
9	Use of a membrane-localized green fluorescent protein allows simultaneous identification of transfected cells and cell cycle analysis by flow cytometry. , 1997, 29, 286-291.		116
10	Proteasome-dependent, ubiquitin-independent degradation of Daxx by the viral pp71 protein in human cytomegalovirus-infected cells. Virology, 2007, 367, 334-338.	2.4	104
11	Cellular and Viral Control over the Initial Events of Human Cytomegalovirus Experimental Latency in CD34 ⁺ Cells. Journal of Virology, 2010, 84, 5594-5604.	3.4	99
12	Cyclin-Dependent Kinase-Like Function Is Shared by the Beta- and Gamma- Subset of the Conserved Herpesvirus Protein Kinases. PLoS Pathogens, 2010, 6, e1001092.	4.7	90
13	Manipulation of the cell cycle by human cytomegalovirus. Frontiers in Bioscience - Landmark, 2002, 7, d295.	3.0	74
14	Regulation of the retinoblastoma proteins by the human herpesviruses. Cell Division, 2009, 4, 1.	2.4	68
15	BclAF1 restriction factor is neutralized by proteasomal degradation and microRNA repression during human cytomegalovirus infection. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9575-9580.	7.1	67
16	An Integral Membrane Green Fluorescent Protein Marker, Us9-GFP, Is Quantitatively Retained in Cells during Propidium Iodide-Based Cell Cycle Analysis by Flow Cytometry. Experimental Cell Research, 1999, 248, 322-328.	2.6	61
17	The Human Cytomegalovirus UL82 Gene Product (pp71) Accelerates Progression through the G 1 Phase of the Cell Cycle. Journal of Virology, 2003, 77, 3451-3459.	3.4	57
18	Cellular defense against latent colonization foiled by human cytomegalovirus UL138 protein. Science Advances, 2015, 1, e1501164.	10.3	56

#	Article	IF	CITATIONS
19	Gender Parity Trends for Invited Speakers at Four Prominent Virology Conference Series. Journal of Virology, 2017, 91, .	3.4	51
20	Tegument protein control of latent herpesvirus establishment and animation. Herpesviridae, 2011, 2, 3.	2.7	49
21	Promyelocytic leukemia-nuclear body proteins: herpesvirus enemies, accomplices, or both?. Future Virology, 2008, 3, 265-277.	1.8	48
22	Myeloblastic Cell Lines Mimic Some but Not All Aspects of Human Cytomegalovirus Experimental Latency Defined in Primary CD34 ⁺ Cell Populations. Journal of Virology, 2013, 87, 9802-9812.	3.4	48
23	Human Embryonic Stem Cell Lines Model Experimental Human Cytomegalovirus Latency. MBio, 2013, 4, e00298-13.	4.1	46
24	Hsp90 Inhibitor 17-DMAG Decreases Expression of Conserved Herpesvirus Protein Kinases and Reduces Virus Production in Epstein-Barr Virus-Infected Cells. Journal of Virology, 2013, 87, 10126-10138.	3.4	46
25	Human Cytomegalovirus Protein pp71 Induces Daxx SUMOylation. Journal of Virology, 2009, 83, 6591-6598.	3.4	44
26	Mouse Tmem135 mutation reveals a mechanism involving mitochondrial dynamics that leads to age-dependent retinal pathologies. ELife, 2016, 5, .	6.0	38
27	Human papillomavirus 16 E7 inactivator of retinoblastoma family proteins complements human cytomegalovirus lacking UL97 protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16823-16828.	7.1	37
28	Ubiquitin-independent proteasomal degradation during oncogenic viral infections. Biochimica Et Biophysica Acta: Reviews on Cancer, 2011, 1816, 147-157.	7.4	34
29	Simultaneous analysis of the cyan, yellow and green fluorescent proteins by flow cytometry using single-laser excitation at 458 nm. , 1999, 37, 68-73.		33
30	Long and Short Isoforms of the Human Cytomegalovirus UL138 Protein Silence IE Transcription and Promote Latency. Journal of Virology, 2016, 90, 9483-9494.	3.4	33
31	Tale of a tegument transactivator: the past, present and future of human CMV pp71. Future Virology, 2012, 7, 855-869.	1.8	31
32	Human cytomegalovirus-encoded viral cyclin-dependent kinase (v-CDK) UL97 phosphorylates and inactivates the retinoblastoma protein-related p107 and p130 proteins. Journal of Biological Chemistry, 2017, 292, 6583-6599.	3.4	31
33	Canonical and Variant Forms of Histone H3 Are Deposited onto the Human Cytomegalovirus Genome during Lytic and Latent Infections. Journal of Virology, 2016, 90, 10309-10320.	3.4	30
34	Nuclear Localization of Tegument-Delivered pp71 in Human Cytomegalovirus-Infected Cells Is Facilitated by One or More Factors Present in Terminally Differentiated Fibroblasts. Journal of Virology, 2010, 84, 9853-9863.	3.4	27
35	Molecular Determinants for the Inactivation of the Retinoblastoma Tumor Suppressor by the Viral Cyclin-dependent Kinase UL97. Journal of Biological Chemistry, 2015, 290, 19666-19680.	3.4	26
36	Human cytomegalovirus pp71: A new viral tool to probe the mechanisms of cell cycle progression and oncogenesis controlled by the retinoblastoma family of tumor suppressors. Journal of Cellular Biochemistry, 2004, 93, 37-45.	2.6	19

#	Article	IF	CITATIONS
37	Elongin B-Mediated Epigenetic Alteration of Viral Chromatin Correlates with Efficient Human Cytomegalovirus Gene Expression and Replication. MBio, 2011, 2, e00023-11.	4.1	18
38	Ubiquitin-Independent Proteasomal Degradation of Tumor Suppressors by Human Cytomegalovirus pp71 Requires the 19S Regulatory Particle. Journal of Virology, 2013, 87, 4665-4671.	3.4	18
39	Heterologous Viral Promoters Incorporated into the Human Cytomegalovirus Genome Are Silenced during Experimental Latency. Journal of Virology, 2013, 87, 9886-9894.	3.4	18
40	Human Cytomegalovirus Enters the Primary CD34 ⁺ Hematopoietic Progenitor Cells Where It Establishes Latency by Macropinocytosis. Journal of Virology, 2019, 93, .	3.4	16
41	The Retinoblastoma Tumor Suppressor Promotes Efficient Human Cytomegalovirus Lytic Replication. Journal of Virology, 2015, 89, 5012-5021.	3.4	15
42	Human Cytomegalovirus-Infected Clioblastoma Cells Display Stem Cell-Like Phenotypes. MSphere, 2017, 2, .	2.9	14
43	Cell Line Models for Human Cytomegalovirus Latency Faithfully Mimic Viral Entry by Macropinocytosis and Endocytosis. Journal of Virology, 2019, 93, .	3.4	13
44	Expanding the Known Functional Repertoire of the Human Cytomegalovirus pp71 Protein. Frontiers in Cellular and Infection Microbiology, 2020, 10, 95.	3.9	13
45	Human Cytomegalovirus UL138 Protein Inhibits the STING Pathway and Reduces Interferon Beta mRNA Accumulation during Lytic and Latent Infections. MBio, 2021, 12, e0226721.	4.1	13
46	The 19S Proteasome Activator Promotes Human Cytomegalovirus Immediate Early Gene Expression through Proteolytic and Nonproteolytic Mechanisms. Journal of Virology, 2014, 88, 11782-11790.	3.4	10
47	Phosphorylation of transcriptional regulators in the retinoblastoma protein pathway by UL97, the viral cyclin-dependent kinase encoded by human cytomegalovirus. Virology, 2017, 512, 95-103.	2.4	10
48	Human Cytomegalovirus Productively Replicates <i>In Vitro</i> in Undifferentiated Oral Epithelial Cells. Journal of Virology, 2018, 92, .	3.4	10
49	Insertion of myeloid-active elements into the human cytomegalovirus major immediate early promoter is not sufficient to drive its activation upon infection of undifferentiated myeloid cells. Virology, 2014, 448, 125-132.	2.4	7
50	Human Cytomegalovirus Genomes Survive Mitosis via the IE19 Chromatin-Tethering Domain. MBio, 2020, 11, .	4.1	7
51	Direct Substrate Identification with an Analog Sensitive (AS) Viral Cyclin-Dependent Kinase (v-Cdk). ACS Chemical Biology, 2018, 13, 189-199.	3.4	6
52	The Membrane-Spanning Peptide and Acidic Cluster Dileucine Sorting Motif of UL138 Are Required To Downregulate MRP1 Drug Transporter Function in Human Cytomegalovirus-Infected Cells. Journal of Virology, 2019, 93, .	3.4	6
53	Deficiencies in Cellular Processes Modulated by the Retinoblastoma Protein Do Not Account for Reduced Human Cytomegalovirus Replication in Its Absence. Journal of Virology, 2015, 89, 11965-11974.	3.4	4
54	Human Cytomegalovirus Can Procure Deoxyribonucleotides for Viral DNA Replication in the Absence of Retinoblastoma Protein Phosphorylation. Journal of Virology, 2016, 90, 8634-8643.	3.4	4

#	Article	IF	CITATIONS
55	HCMV Assembly Is Totally Tubular. Developmental Cell, 2018, 45, 1-2.	7.0	4
56	The Golgi sorting motifs of human cytomegalovirus UL138 are not required for latency maintenance. Virus Research, 2019, 270, 197646.	2.2	4
57	An Update on Gender Parity Trends for Invited Speakers at Four Prominent Virology Conference Series. Journal of Virology, 2021, 95, .	3.4	4
58	Human cytomegalovirus lytic infection inhibits replication-dependent histone synthesis and requires stem loop binding protein function. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2122174119.	7.1	3
59	Virology Laboratory Guidelines. Journal of Virology, 2021, 95, e0111221.	3.4	1
60	Sifting and Winnowing through Human Cytomegalovirus Lytic Replication and Latency. PLoS Pathogens, 2016, 12, e1005607.	4.7	0