
Wentao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5800796/publications.pdf

Version: 2024-02-01

WENTAO LI

#	Article	IF	CITATIONS
1	The construction and immunogenicity analyses of a recombinant pseudorabies virus with porcine circovirus type 3 capsid protein co-expression. Veterinary Microbiology, 2022, 264, 109283.	1.9	6
2	Levistolide A Inhibits PEDV Replication via Inducing ROS Generation. Viruses, 2022, 14, 258.	3.3	3
3	In Silico Infection Analysis (iSFA) Identified Coronavirus Infection and Potential Transmission Risk in Mammals. Frontiers in Molecular Biosciences, 2022, 9, 831876.	3.5	2
4	An ACE2-blocking antibody confers broad neutralization and protection against Omicron and other SARS-CoV-2 variants of concern. Science Immunology, 2022, 7, eabp9312.	11.9	35
5	Antigenic structure of the human coronavirus OC43 spike reveals exposed and occluded neutralizing epitopes. Nature Communications, 2022, 13, .	12.8	12
6	A conserved immunogenic and vulnerable site on the coronavirus spike protein delineated by cross-reactive monoclonal antibodies. Nature Communications, 2021, 12, 1715.	12.8	138
7	Serologic Screening of Severe Acute Respiratory Syndrome Coronavirus 2 Infection in Cats and Dogs during First Coronavirus Disease Wave, the Netherlands. Emerging Infectious Diseases, 2021, 27, 1362-1370.	4.3	51
8	Human Milk from Previously COVID-19-Infected Mothers: The Effect of Pasteurization on Specific Antibodies and Neutralization Capacity. Nutrients, 2021, 13, 1645.	4.1	54
9	Structural insights into the cross-neutralization of SARS-CoV and SARS-CoV-2 by the human monoclonal antibody 47D11. Science Advances, 2021, 7, .	10.3	42
10	SARS-CoV-2 Neutralizing Human Antibodies Protect Against Lower Respiratory Tract Disease in a Hamster Model. Journal of Infectious Diseases, 2021, 223, 2020-2028.	4.0	28
11	A plug-and-play platform of ratiometric bioluminescent sensors for homogeneous immunoassays. Nature Communications, 2021, 12, 4586.	12.8	50
12	Coronavirus hemagglutinin-esterase and spike proteins coevolve for functional balance and optimal virion avidity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25759-25770.	7.1	48
13	Development of a SARS-CoV-2 Total Antibody Assay and the Dynamics of Antibody Response over Time in Hospitalized and Nonhospitalized Patients with COVID-19. Journal of Immunology, 2020, 205, 3491-3499.	0.8	61
14	Accurate serology for SARS-CoV-2 and common human coronaviruses using a multiplex approach. Emerging Microbes and Infections, 2020, 9, 1965-1973.	6.5	45
15	Older adults lack SARS CoV-2 cross-reactive T lymphocytes directed to human coronaviruses OC43 and NL63. Scientific Reports, 2020, 10, 21447.	3.3	70
16	A human monoclonal antibody blocking SARS-CoV-2 infection. Nature Communications, 2020, 11, 2251.	12.8	919
17	Severe Acute Respiratory Syndrome Coronavirus 2â^'Specific Antibody Responses in Coronavirus Disease Patients. Emerging Infectious Diseases, 2020, 26, 1478-1488.	4.3	1,389
18	Serologic Detection of Middle East Respiratory Syndrome Coronavirus Functional Antibodies. Emerging Infectious Diseases, 2020, 26, 1024-1027.	4.3	16

Wentao Li

#	Article	IF	CITATIONS
19	Serological Screening for Coronavirus Infections in Cats. Viruses, 2019, 11, 743.	3.3	25
20	Human coronaviruses OC43 and HKU1 bind to 9- <i>O</i> -acetylated sialic acids via a conserved receptor-binding site in spike protein domain A. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2681-2690.	7.1	335
21	Species-Specific Colocalization of Middle East Respiratory Syndrome Coronavirus Attachment and Entry Receptors. Journal of Virology, 2019, 93, .	3.4	33
22	Towards a solution to MERS: protective human monoclonal antibodies targeting different domains and functions of the MERS-coronavirus spike glycoprotein. Emerging Microbes and Infections, 2019, 8, 516-530.	6.5	99
23	Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors. Nature Structural and Molecular Biology, 2019, 26, 1151-1157.	8.2	218
24	Glycan Shield and Fusion Activation of a Deltacoronavirus Spike Glycoprotein Fine-Tuned for Enteric Infections. Journal of Virology, 2018, 92, .	3.4	124
25	Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5135-E5143.	7.1	192
26	Porcine epidemic diarrhea virus (PEDV) introduction into a naive Dutch pig population in 2014. Veterinary Microbiology, 2018, 221, 13-18.	1.9	18
27	Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry. Virus Research, 2017, 235, 6-13.	2.2	74
28	Cell Attachment Domains of the Porcine Epidemic Diarrhea Virus Spike Protein Are Key Targets of Neutralizing Antibodies. Journal of Virology, 2017, 91, .	3.4	106
29	Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8508-E8517.	7.1	272
30	Coinfection with Haemophilus parasuis serovar 4 increases the virulence of porcine circovirus type 2 in piglets. Virology Journal, 2017, 14, 227.	3.4	21
31	The antiviral activity of arctigenin in traditional Chinese medicine on porcine circovirus type 2. Research in Veterinary Science, 2016, 106, 159-164.	1.9	44
32	Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nature Structural and Molecular Biology, 2016, 23, 899-905.	8.2	366
33	Cellular entry of the porcine epidemic diarrhea virus. Virus Research, 2016, 226, 117-127.	2.2	128
34	A Single Point Mutation Creating a Furin Cleavage Site in the Spike Protein Renders Porcine Epidemic Diarrhea Coronavirus Trypsin Independent for Cell Entry and Fusion. Journal of Virology, 2015, 89, 8077-8081.	3.4	33
35	Porcine epidemic diarrhea virus ORF3 gene prolongs S-phase, facilitates formation of vesicles and promotes the proliferation of attenuated PEDV. Virus Genes, 2015, 51, 385-392.	1.6	37
36	Gene Expression Profiling of Cecropin B-Resistant Haemophilus parasuis. Journal of Molecular Microbiology and Biotechnology, 2014, 24, 120-129.	1.0	6

Wentao Li

#	Article	IF	CITATIONS
37	Hierarchical Nanogaps within Bioscaffold Arrays as a High-Performance SERS Substrate for Animal Virus Biosensing. ACS Applied Materials & Interfaces, 2014, 6, 6281-6289.	8.0	105
38	Proteolytic Activation of the Porcine Epidemic Diarrhea Coronavirus Spike Fusion Protein by Trypsin in Cell Culture. Journal of Virology, 2014, 88, 7952-7961.	3.4	105
39	Transcription analysis of the porcine alveolar macrophage response to porcine circovirus type 2. BMC Genomics, 2013, 14, 353.	2.8	33
40	Porcine CD74 is involved in the inflammatory response activated by nuclear factor kappa B during porcine circovirus type 2 (PCV-2) infection. Archives of Virology, 2013, 158, 2285-2295.	2.1	17
41	A SERS-based immunoassay for porcine circovirus type 2 using multi-branched gold nanoparticles. Mikrochimica Acta, 2013, 180, 1501-1507.	5.0	17
42	Broad Activity against Porcine Bacterial Pathogens Displayed by Two Insect Antimicrobial Peptides Moricin and Cecropin B. Molecules and Cells, 2013, 35, 106-114.	2.6	41
43	Immunologic Effect of Attenuated Salmonella enteric Serovar Choleraesuis C501 Expressing Recombinant Mycoplasma hyopneumoniae P97R1 Adhesin and NrdF Antigens in Mice. Journal of Vaccines & Vaccination, 2013, 04, .	0.3	0
44	New Variants of Porcine Epidemic Diarrhea Virus, China, 2011. Emerging Infectious Diseases, 2012, 18, 1350-1353.	4.3	273
45	Transcriptional Profiling ofHaemophilus parasuisSH0165 Response to Tilmicosin. Microbial Drug Resistance, 2012, 18, 604-615.	2.0	6
46	Proteomic analysis of porcine alveolar macrophages infected with porcine circovirus type 2. Journal of Proteomics, 2012, 75, 3258-3269.	2.4	28
47	Transcription analysis on response of porcine alveolar macrophages to Haemophilus parasuis. BMC Genomics, 2012, 13, 68.	2.8	38
48	Efficacy of single dose of an inactivated porcine circovirus type 2 (PCV2) whole-virus vaccine with oil adjuvant in piglets. Acta Veterinaria Scandinavica, 2012, 54, 67.	1.6	5
49	Aqueous one-pot synthesis of bright and ultrasmall CdTe/CdS near-infrared-emitting quantum dots and their application for tumor targeting in vivo. Chemical Communications, 2012, 48, 4971.	4.1	84
50	New Variants of Porcine Epidemic Diarrhea Virus, China, 2011. Emerging Infectious Diseases, 2012, 18, 1350-1353.	4.3	318
51	Plasmid Mediated Streptomycin and Sulfonamide Resistance in Haemophilus parasuis. Journal of Animal and Veterinary Advances, 2012, 11, 1106-1109.	0.1	6
52	Development and evaluation of loop-mediated isothermal amplification for rapid detection of Haemophilus parasuis. FEMS Microbiology Letters, 2010, 313, 54-60.	1.8	14
53	Ultrasensitive detection of porcine circovirus type 2 using gold(iii) enhanced chemiluminescence immunoassay. Analyst, The, 2010, 135, 1680.	3.5	16
54	The Diversity and Spatiotemporally Evolutionary Dynamic of Atypical Porcine Pestivirus in China. Frontiers in Microbiology, 0, 13, .	3.5	4