Zhengchun Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5800526/publications.pdf

Version: 2024-02-01

218677 182427 2,690 62 26 51 citations h-index g-index papers 62 62 62 3790 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Highly Stretchable Transparent Selfâ€Powered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics. Advanced Materials, 2018, 30, e1706738.	21.0	315
2	Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. Materials Horizons, 2017, 4, 997-1019.	12.2	296
3	Black Phosphorus Quantum Dots with Tunable Memory Properties and Multilevel Resistive Switching Characteristics. Advanced Science, 2017, 4, 1600435.	11.2	175
4	Full 3D Printing of Stretchable Piezoresistive Sensor with Hierarchical Porosity and Multimodulus Architecture. Advanced Functional Materials, 2019, 29, 1807569.	14.9	172
5	High-Performance Humidity Sensor Based on Urchin-Like Composite of Ti ₃ C ₂ MXene-Derived TiO ₂ Nanowires. ACS Applied Materials & Samp; Interfaces, 2019, 11, 38116-38125.	8.0	156
6	Eradication of tumor growth by delivering novel photothermal selenium-coated tellurium nanoheterojunctions. Science Advances, 2020, 6, eaay6825.	10.3	126
7	Ionic Gels and Their Applications in Stretchable Electronics. Macromolecular Rapid Communications, 2018, 39, e1800246.	3.9	112
8	Flexible Piezoresistive Sensors with Wide-Range Pressure Measurements Based on a Graded Nest-like Architecture. ACS Applied Materials & Samp; Interfaces, 2020, 12, 26137-26144.	8.0	103
9	Significance of Flexible Substrates for Wearable and Implantable Devices: Recent Advances and Perspectives. Advanced Materials Technologies, 2022, 7, .	5.8	81
10	A fully inkjet-printed transparent humidity sensor based on a Ti ₃ C ₂ /Ag hybrid for touchless sensing of finger motion. Nanoscale, 2019, 11, 21522-21531.	5.6	68
11	Light-Emission Enhancement in a Flexible and Size-Controllable ZnO Nanowire/Organic Light-Emitting Diode Array by the Piezotronic Effect. ACS Photonics, 2017, 4, 1344-1349.	6.6	65
12	Visualization Recording and Storage of Pressure Distribution through a Smart Matrix Based on the Piezotronic Effect. Advanced Materials, 2017, 29, 1701253.	21.0	59
13	Vat Photopolymerization 3D Printing of Advanced Soft Sensors and Actuators: From Architecture to Function. Advanced Materials Technologies, 2021, 6, 2001218.	5.8	57
14	Multilayer Double-Sided Microstructured Flexible Iontronic Pressure Sensor with a Record-wide Linear Working Range. ACS Sensors, 2021, 6, 1785-1795.	7.8	56
15	A High-Performance Flexible Pressure Sensor Realized by Overhanging Cobweb-like Structure on a Micropost Array. ACS Applied Materials & Samp; Interfaces, 2020, 12, 48938-48947.	8.0	55
16	pH-Responsive Dual Drug-Loaded Nanocarriers Based on Poly (2-Ethyl-2-Oxazoline) Modified Black Phosphorus Nanosheets for Cancer Chemo/Photothermal Therapy. Frontiers in Pharmacology, 2019, 10, 270.	3.5	50
17	Optoelectronic Gas Sensor Based on Few-Layered InSe Nanosheets for NO ₂ Detection with Ultrahigh Antihumidity Ability. Analytical Chemistry, 2020, 92, 11277-11287.	6.5	47
18	Structured Output-Associated Dictionary Learning for Haptic Understanding. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47, 1564-1574.	9.3	45

#	Article	IF	Citations
19	A triboelectric-inductive hybrid tactile sensor for highly accurate object recognition. Nano Energy, 2022, 96, 107063.	16.0	39
20	A highly elastic, Room-temperature repairable and recyclable conductive hydrogel for stretchable electronics. Journal of Colloid and Interface Science, 2021, 588, 295-304.	9.4	36
21	Efficient deep blue electroluminescence with CIE <i>y</i> â^ (0.05–0.07) from phenanthroimidazole–acridine derivative hybrid fluorophores. Journal of Materials Chemistry C, 2018, 6, 9363-9373.	5.5	35
22	Naphthalimide–arylamine derivatives with aggregation induced delayed fluorescence for realizing efficient green to red electroluminescence. Journal of Materials Chemistry C, 2019, 7, 2886-2897.	5.5	35
23	Preparation of molecularly imprinted polymeric microspheres based on distillation–precipitation polymerization for an ultrasensitive electrochemical sensor. Analyst, The, 2017, 142, 1091-1098.	3.5	34
24	Two-dimensional pnictogens, their chemistry and applications. FlatChem, 2019, 13, 8-24.	5.6	33
25	Voltammetric lidocaine sensor by using a glassy carbon electrode modified with porous carbon prepared from a MOF, and with a molecularly imprinted polymer. Mikrochimica Acta, 2018, 185, 78.	5.0	32
26	A ratiometric electrochemiluminescence sensing platform for robust ascorbic acid analysis based on a molecularly imprinted polymer modified bipolar electrode. Biosensors and Bioelectronics, 2020, 167, 112490.	10.1	32
27	Selective detection of glutathione by flower-like NiV2O6 with only peroxidase-like activity at neutral pH. Talanta, 2021, 234, 122645.	5.5	26
28	A smart flexible supercapacitor enabled by a transparent electrochromic electrode composed of W ₁₈ O ₄₉ nanowires/rGO composite films. Journal of Materials Chemistry A, 2022, 10, 4870-4880.	10.3	26
29	High-performance perovskite light-emitting diodes based on double hole transport layers. Journal of Materials Chemistry C, 2021, 9, 2115-2122.	5.5	25
30	Simultaneously Achieving Ultrahigh Sensitivity and Wide Detection Range for Stretchable Strain Sensors with an Interface‣ocking Strategy. Advanced Materials Technologies, 2020, 5, 2000008.	5.8	24
31	A Highâ€Performance Flexible Broadband Photodetector Based on Graphene–PTAA–Perovskite Heterojunctions. Advanced Electronic Materials, 2021, 7, 2000522.	5.1	24
32	Progress on Self-Powered Wearable and Implantable Systems Driven by Nanogenerators. Micromachines, 2021, 12, 666.	2.9	23
33	Investigation of Fog Collection on Cactus-inspired Structures. Journal of Bionic Engineering, 2016, 13, 364-372.	5.0	18
34	A triboelectric-piezoresistive hybrid sensor for precisely distinguishing transient processes in mechanical stimuli. Nano Energy, 2020, 78, 105216.	16.0	17
35	Interfacially Locked Metal Aerogel Inside Porous Polymer Composite for Sensitive and Durable Flexible Piezoresistive Sensors. Advanced Science, 2022, 9, .	11.2	16
36	An Optimized Flutter-Driven Triboelectric Nanogenerator with a Low Cut-In Wind Speed. Micromachines, 2021, 12, 366.	2.9	15

#	Article	IF	Citations
37	Machine Learning Methods for Real-Time Blood Pressure Measurement Based on Photoplethysmography. , 2018, , .		14
38	Transparent, Conductive Hydrogels with High Mechanical Strength and Toughness. Polymers, 2021, 13, 2004.	4.5	13
39	A paper-based microfluidic sensor array combining molecular imprinting technology and carbon quantum dots for the discrimination of nitrophenol isomers. Journal of Hazardous Materials, 2022, 435, 129012.	12.4	13
40	Self-standing hollow porous AuPt nanospheres and their enhanced electrocatalytic performance. Journal of Colloid and Interface Science, 2019, 554, 396-403.	9.4	12
41	Full printed flexible pressure sensor based on microcapsule controllable structure and composite dielectrics. Flexible and Printed Electronics, 2021, 6, 014001.	2.7	12
42	Engineering Monoâ€Chalcogen Nanomaterials for Omnipotent Anticancer Applications: Progress and Challenges. Advanced Healthcare Materials, 2020, 9, 2000273.	7.6	11
43	A ternary heterogeneous hydrogel with strength elements for resilient, self-healing, and recyclable epidermal electronics. Npj Flexible Electronics, 2022, 6, .	10.7	11
44	A Textile Proximity/Pressure Dual-Mode Sensor Based on Magneto-Straining and Piezoresistive Effects. IEEE Sensors Journal, 2022, 22, 10420-10427.	4.7	9
45	A Heart Rate Measurement System Based on Ballistocardiogram for Smart Furniture. , 2018, , .		8
46	A study on Li _{0.33} La _{0.55} TiO ₃ solid electrolyte with high ionic conductivity and its application in flexible all-solid-state batteries. Nanoscale, 2021, 13, 11518-11524.	5.6	8
47	Robust Conductive Hydrogels with Ultrafast Self-Recovery and Nearly Zero Response Hysteresis for Epidermal Sensors. Nanomaterials, 2021, 11, 1854.	4.1	7
48	Highly phosphorescent platinum($<$ scp $>$ ii $<$ /scp $>$) complexes supported by (2-(1 $<$ i> $>$ H $<$ /i> $>$ -benzimidazole)-phenyl)diphosphine oxide ancillary ligands. Journal of Materials Chemistry C, 2021, 9, 9627-9636.	5.5	7
49	Touchless Sensing Interface Based on the Magneto-Piezoresistive Effect of Magnetic Microstructures with Stacked Conductive Coating. ACS Applied Materials & Samp; Interfaces, 2021, 13, 61422-61433.	8.0	7
50	Stabilization of Li0.33La0.55TiO3 Solid Electrolyte Interphase Layer and Enhancement of Cycling Performance of LiNi0.5Co0.3Mn0.2O2 Battery Cathode with Buffer Layer. Nanomaterials, 2021, 11, 989.	4.1	5
51	A Low Powerâ€consumption and Transient Nonvolatile Memory Based on Highly Dense Allâ€Inorganic Perovskite Films. Advanced Electronic Materials, 0, , 2101412.	5.1	5
52	A Bilayer Skin-Inspired Hydrogel with Strong Bonding Interface. Nanomaterials, 2022, 12, 1137.	4.1	5
53	Ellagic Acid Nanoemulsion in Cosmetics: The Preparation and Evaluation of a New Nanoemulsion Method as a Whitening and Antiaging Agent. IEEE Nanotechnology Magazine, 2018, 12, 14-20.	1.3	4
54	Highly-Responsive Broadband Photodetector Based on Graphene-PTAA-SnS2 Hybrid. Nanomaterials, 2022, 12, 475.	4.1	4

#	Article	IF	CITATIONS
55	Utility of TPP-manufactured biophysical restrictions to probe multiscale cellular dynamics. Bio-Design and Manufacturing, 2021, 4, 776-789.	7.7	3
56	Analytical Model of the Piezoresistive Behavior of Highly Compressible Sensors Made of Microporous Nanocomposites. Advanced Theory and Simulations, 2021, 4, .	2.8	3
57	A Facile Low-Cost Wireless Self-Powered Footwear System for Monitoring Plantar Pressure. , 2021, , .		1
58	Piezoresistive Sensors: Full 3D Printing of Stretchable Piezoresistive Sensor with Hierarchical Porosity and Multimodulus Architecture (Adv. Funct. Mater. 11/2019). Advanced Functional Materials, 2019, 29, 1970067.	14.9	0
59	Leaf-like Self-assembled MXene/ZnOEP Hybrid Network for Highly-Sensitive Temperature Sensing in Electronic Skin., 2021,,.		О
60	A surface and interior material identification technology based on dual-mode sensor. , 2021, , .		0
61	Electric-Field Induced and Highly Deformable Triboelectric Generators from Ionic Gels. , 2022, , .		0
62	Electrospun Titanium Dioxide Nanofibers Reinforced Anti-freezing, Adhesive and Conductive Hydrogels., 2022,,.		0