## Michael J Gray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5799674/publications.pdf Version: 2024-02-01



MICHAEL LODAY

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The role of nitrogen-responsive regulators in controlling inorganic polyphosphate synthesis in<br>Escherichia coli. Microbiology (United Kingdom), 2022, 168, .                      | 1.8  | 5         |
| 2  | Inorganic polyphosphate in host and microbe biology. Trends in Microbiology, 2021, 29, 1013-1023.                                                                                    | 7.7  | 33        |
| 3  | Induction of the reactive chlorine-responsive transcription factor RclR in <i>Escherichia coli</i> following ingestion by neutrophils. Pathogens and Disease, 2021, 79, .            | 2.0  | 13        |
| 4  | The Cu(II) Reductase RclA Protects <i>Escherichia coli</i> against the Combination of Hypochlorous<br>Acid and Intracellular Copper. MBio, 2020, 11, .                               | 4.1  | 17        |
| 5  | Interactions between DksA and Stress-Responsive Alternative Sigma Factors Control Inorganic<br>Polyphosphate Accumulation in Escherichia coli. Journal of Bacteriology, 2020, 202, . | 2.2  | 21        |
| 6  | Phosphate Transporter PstSCAB of Campylobacter jejuni Is a Critical Determinant of Lactate-Dependent<br>Growth and Colonization in Chickens. Journal of Bacteriology, 2020, 202, .   | 2.2  | 5         |
| 7  | Preventing dysbiosis of the neonatal mouse intestinal microbiome protects against late-onset sepsis.<br>Nature Medicine, 2019, 25, 1772-1782.                                        | 30.7 | 91        |
| 8  | Assaying for Inorganic Polyphosphate in Bacteria. Journal of Visualized Experiments, 2019, , .                                                                                       | 0.3  | 15        |
| 9  | Inorganic Polyphosphate Accumulation in Escherichia coli Is Regulated by DksA but Not by (p)ppGpp.<br>Journal of Bacteriology, 2019, 201, .                                          | 2.2  | 41        |
| 10 | Complex Responses to Hydrogen Peroxide and Hypochlorous Acid by the Probiotic Bacterium<br>Lactobacillus reuteri. MSystems, 2019, 4, .                                               | 3.8  | 14        |
| 11 | Mutations in Escherichia coli Polyphosphate Kinase That Lead to Dramatically Increased <i>In Vivo</i> Polyphosphate Levels. Journal of Bacteriology, 2018, 200, .                    | 2.2  | 37        |
| 12 | Polyphosphate Stabilizes Protein Unfolding Intermediates as Soluble Amyloid-like Oligomers. Journal<br>of Molecular Biology, 2018, 430, 4195-4208.                                   | 4.2  | 45        |
| 13 | The anti-inflammatory drug mesalamine targets bacterial polyphosphate accumulation. Nature<br>Microbiology, 2017, 2, 16267.                                                          | 13.3 | 94        |
| 14 | Do nucleic acids moonlight as molecular chaperones?. Nucleic Acids Research, 2016, 44, 4835-4845.                                                                                    | 14.5 | 58        |
| 15 | Does the Transcription Factor NemR Use a Regulatory Sulfenamide Bond to Sense Bleach?.<br>Antioxidants and Redox Signaling, 2015, 23, 747-754.                                       | 5.4  | 45        |
| 16 | Oxidative stress protection by polyphosphate—new roles for an old player. Current Opinion in<br>Microbiology, 2015, 24, 1-6.                                                         | 5.1  | 146       |
| 17 | Protein Quality Control under Oxidative Stress Conditions. Journal of Molecular Biology, 2015, 427, 1549-1563.                                                                       | 4.2  | 146       |
| 18 | Polyphosphate Is a Primordial Chaperone. Molecular Cell, 2014, 53, 689-699.                                                                                                          | 9.7  | 291       |

MICHAEL J GRAY

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | About the dangers, costs and benefits of living an aerobic lifestyle. Biochemical Society Transactions, 2014, 42, 917-921.                                                                                    | 3.4 | 12        |
| 20 | The RclR Protein Is a Reactive Chlorine-specific Transcription Factor in Escherichia coli. Journal of<br>Biological Chemistry, 2013, 288, 32574-32584.                                                        | 3.4 | 71        |
| 21 | Bacterial Responses to Reactive Chlorine Species. Annual Review of Microbiology, 2013, 67, 141-160.                                                                                                           | 7.3 | 226       |
| 22 | NemR Is a Bleach-sensing Transcription Factor. Journal of Biological Chemistry, 2013, 288, 13789-13798.                                                                                                       | 3.4 | 92        |
| 23 | A new pathway for the synthesis of αâ€ribazoleâ€phosphate in <i>Listeria innocua</i> . Molecular<br>Microbiology, 2010, 77, 1429-1438.                                                                        | 2.5 | 34        |
| 24 | In Vivo Analysis of Cobinamide Salvaging in <i>Rhodobacter sphaeroides</i> Strain 2.4.1. Journal of Bacteriology, 2009, 191, 3842-3851.                                                                       | 2.2 | 26        |
| 25 | The cobinamide amidohydrolase (cobyric acidâ€forming) CbiZ enzyme: a critical activity of the cobamide<br>remodelling system of <i>Rhodobacter sphaeroides</i> . Molecular Microbiology, 2009, 74, 1198-1210. | 2.5 | 52        |
| 26 | The genome of <i>Rhodobacter sphaeroides</i> strain 2.4.1 encodes functional cobinamide salvaging systems of archaeal and bacterial origins. Molecular Microbiology, 2008, 70, 824-836.                       | 2.5 | 27        |
| 27 | Autophosphorylation and Dephosphorylation by Soluble Forms of the Nitrate-Responsive Sensors<br>NarX and NarQ from <i>Escherichia coli</i> K-12. Journal of Bacteriology, 2008, 190, 3869-3876.               | 2.2 | 33        |
| 28 | Single-enzyme conversion of FMNH2 to 5,6-dimethylbenzimidazole, the lower ligand of B12.<br>Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2921-2926.            | 7.1 | 56        |
| 29 | Attributing Risk to Listeria monocytogenes Subgroups: Dose Response in Relation to Genetic Lineages.<br>Journal of Food Protection, 2006, 69, 335-344.                                                        | 1.7 | 72        |
| 30 | How the Bacterial Pathogen Listeria monocytogenes Mediates the Switch from Environmental Dr.<br>Jekyll to Pathogenic Mr. Hyde. Infection and Immunity, 2006, 74, 2505-2512.                                   | 2.2 | 174       |
| 31 | Listeria monocytogenes Isolates from Foods and Humans Form Distinct but Overlapping Populations.<br>Applied and Environmental Microbiology, 2004, 70, 5833-5841.                                              | 3.1 | 229       |
| 32 | Detection of ViableMycobacterium aviumSubsp.ParatuberculosisUsing Luciferase Reporter Systems.<br>Foodborne Pathogens and Disease, 2004, 1, 258-266.                                                          | 1.8 | 16        |
| 33 | Characterization of Chocolate Milk Spoilage Patterns. Journal of Food Protection, 2000, 63, 516-521.                                                                                                          | 1.7 | 24        |