
In-Chul Um

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5799380/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation, Structural Characterization, and Properties of Natural Silk Non-woven Fabrics from Different Silkworm Varieties. Fibers and Polymers, 2022, 23, 1130-1141.	2.1	7
2	Silk/Rayon Webs and Nonwoven Fabrics: Fabrication, Structural Characteristics, and Properties. International Journal of Molecular Sciences, 2022, 23, 7511.	4.1	7
3	Brush drawing multifunctional electronic textiles for human-machine interfaces. Current Applied Physics, 2022, 41, 131-138.	2.4	3
4	Effects of Fabrication Conditions on Structure and Properties of Mechanically Prepared Natural Silk Web and Non-Woven Fabrics. Polymers, 2021, 13, 1578.	4.5	10
5	Electrospinning to Surpass White Natural Silk in Sunlight Rejection for Radiative Cooling. Advanced Photonics Research, 2021, 2, 2100008.	3.6	18
6	Effect of Relative Humidity on the Electrospinning Performance of Regenerated Silk Solution. Polymers, 2021, 13, 2479.	4.5	13
7	Preparation, Structural Characteristics, and Properties of Airlaid Nonwoven Silk Fabric. Porrime, 2020, 44, 809-816.	0.2	7
8	Effect of Silkworm Variety on Characteristics of Raw Sericin in Silk. Fibers and Polymers, 2019, 20, 271-279.	2.1	11
9	Effect of Sericin Content on the Structural Characteristics and Properties of Electro-spun Regenerated Silk. Fibers and Polymers, 2018, 19, 507-514.	2.1	10
10	Effect of molecular weight on electro-spinning performance of regenerated silk. International Journal of Biological Macromolecules, 2018, 106, 1166-1172.	7.5	40
11	Preparation of new natural silk non-woven fabrics by using adhesion characteristics of sericin and their characterization. International Journal of Biological Macromolecules, 2018, 106, 39-47.	7.5	34
12	Effect of molecular weight on the structure and mechanical properties of silk sericin gel, film, and sponge. International Journal of Biological Macromolecules, 2018, 119, 821-832.	7.5	35
13	Effect of degumming methods on structural characteristics and properties of regenerated silk. International Journal of Biological Macromolecules, 2017, 104, 294-302.	7.5	69
14	Effect of sericin concentration and ethanol content on gelation behavior, rheological properties, and sponge characteristics of silk sericin. European Polymer Journal, 2017, 93, 761-774.	5.4	43
15	A facile fabrication method and the boosted adsorption and photodegradation activity of CuO nanoparticles synthesized using a silk fibroin template. Journal of Industrial and Engineering Chemistry, 2017, 56, 335-341.	5.8	24
16	Effects of electric field on the maximum electro-spinning rate of silk fibroin solutions. International Journal of Biological Macromolecules, 2017, 95, 8-13.	7.5	20
17	Effect of residual sericin on the structural characteristics and properties of regenerated silk films. International Journal of Biological Macromolecules, 2016, 89, 273-278.	7.5	33
18	Effect of centrifugation on the structure and properties of silk sericin. International Journal of Industrial Entomology, 2016, 33, 144-148.	0.1	1

IN-CHUL UM

#	Article	IF	CITATIONS
19	Effect of degumming on structure and mechanical properties of silk textile made with silk/polyurethane core-spun yarn. International Journal of Industrial Entomology, 2016, 33, 132-137.	0.1	0
20	Effect of treatment temperature on mechanical properties of silk textiles made with silk/polyurethane core-spun yarn. International Journal of Industrial Entomology, 2016, 33, 108-112.	0.1	1
21	Effect of Korean Bombyx mori variety on electro-spinning performance of regenerated silk fibroin. Fibers and Polymers, 2015, 16, 1935-1940.	2.1	14
22	Evaluation of bone formation and membrane degradation in guided bone regeneration using a 4-hexylresorcinol-incorporated silk fabric membrane. Maxillofacial Plastic and Reconstructive Surgery, 2015, 37, 32.	1.8	17
23	Effect of shear viscosity on the preparation of sphere-like silk fibroin microparticles by electrospraying. International Journal of Biological Macromolecules, 2015, 79, 988-995.	7.5	34
24	Effects of different Bombyx mori silkworm varieties on the structural characteristics and properties of silk. International Journal of Biological Macromolecules, 2015, 79, 943-951.	7.5	65
25	Characteristics of TEMPO-oxidized cellulose fibril-based hydrogels induced by cationic ions and their properties. Cellulose, 2015, 22, 1993-2010.	4.9	68
26	Effects of solvent on the solution properties, structural characteristics and properties of silk sericin. International Journal of Biological Macromolecules, 2015, 78, 287-295.	7.5	53
27	Effect of storage and drying temperature on the gelation behavior and structural characteristics of sericin. International Journal of Biological Macromolecules, 2015, 81, 936-941.	7.5	29
28	Effect of different Bombyx mori silkworm varieties on the wet spinning of silk fibroin. International Journal of Industrial Entomology, 2015, 30, 75-80.	0.1	2
29	Structure and properties of silk sericin obtained from different silkworm varieties. International Journal of Industrial Entomology, 2015, 30, 81-85.	0.1	5
30	Preparation, structure, and properties of cellulose nanofibril/silk sericin composite film. International Journal of Industrial Entomology, 2015, 31, 1-6.	0.1	3
31	Effectiveness of Woven Silk Dressing Materials on Full-skin Thickness Burn Wounds in Rat Model. Maxillofacial Plastic and Reconstructive Surgery, 2014, 36, 280-284.	1.8	14
32	Effect of molecular weight and concentration on crystallinity and post drawing of wet spun silk fibroin fiber. Fibers and Polymers, 2014, 15, 153-160.	2.1	45
33	Relationship between rheology and electro-spinning performance of regenerated silk fibroin prepared using different degumming methods. Korea Australia Rheology Journal, 2014, 26, 119-125.	1.7	24
34	Effect of degumming ratio on wet spinning and post drawing performance of regenerated silk. International Journal of Biological Macromolecules, 2014, 67, 387-393.	7.5	42
35	Examination of thermo-gelation behavior of HPMC and HEMC aqueous solutions using rheology. Korea Australia Rheology Journal, 2013, 25, 67-75.	1.7	25
36	Effect of degumming condition on the solution properties and electrospinnablity of regenerated silk solution. International Journal of Biological Macromolecules, 2013, 55, 161-168.	7.5	67

Ім-Сниг Им

#	Article	IF	CITATIONS
37	Effects of degumming conditions on electro-spinning rate of regenerated silk. International Journal of Biological Macromolecules, 2013, 61, 50-57.	7.5	32
38	Extraction conditions of Antheraea mylitta sericin with high yields and minimum molecular weight degradation. International Journal of Biological Macromolecules, 2013, 52, 59-65.	7.5	42
39	Effect of Processing Conditions on the Homogeneity of Partially Degummed Silk Evaluated by FTIR Spectroscopy. International Journal of Industrial Entomology, 2013, 26, 54-60.	0.1	12
40	The Effect of Extraction Conditions and Film Side on the Molecular Conformation of Silk Sericin Film. International Journal of Industrial Entomology, 2013, 26, 113-118.	0.1	8
41	Preparation of Cellulose Nanofibril/Regenerated Silk Fibroin Composite Fibers. International Journal of Industrial Entomology, 2013, 26, 81-88.	0.1	15
42	Effect of Extraction Time on the Rheological Properties of Sericin Solutions and Gels. International Journal of Industrial Entomology, 2013, 27, 180-184.	0.1	6
43	Antihyperglycemic and Antioxidative Effects of Hydroxyethyl Methylcellulose (HEMC) and Hydroxypropyl Methylcellulose (HPMC) in Mice Fed with a High Fat Diet. International Journal of Molecular Sciences, 2012, 13, 3738-3750.	4.1	12
44	Molecular weight distribution and solution properties of silk fibroins with different dissolution conditions. International Journal of Biological Macromolecules, 2012, 51, 336-341.	7.5	97
45	Comparative evaluation of the hypolipidemic effects of hydroxyethyl methylcellulose (HEMC) and hydroxypropyl methylcellulose (HPMC) in high fat-fed mice. Food and Chemical Toxicology, 2012, 50, 130-134.	3.6	15
46	Hypoglycemic and antioxidative effects of hydroxyethyl methylcellulose in mice fed with high fat diet. Food and Chemical Toxicology, 2012, 50, 1716-1721.	3.6	7
47	Antihyperlipidemic effects of hydroxyethyl methylcellulose with varying viscosity in mice fed with high fat diet. Food Research International, 2012, 48, 1-6.	6.2	11
48	The effect of ultrasonication on the micro-splitting of wool fiber. Fibers and Polymers, 2012, 13, 943-947.	2.1	4
49	Effect of molecular weight and storage time on the wet- and electro-spinning of regenerated silk fibroin. Polymer Degradation and Stability, 2012, 97, 1060-1066.	5.8	59
50	Hemicellulose Removal and Crystalline Structure Transition of Flax Fiber with Alkali Treatment. Textile Science and Engineering, 2012, 49, 271-278.	0.4	1
51	Antihyperlipidemic and Body Fat-Lowering Effects of Silk Proteins with Different Fibroin/Sericin Compositions in Mice Fed with High Fat Diet. Journal of Agricultural and Food Chemistry, 2011, 59, 4192-4197.	5.2	49
52	Refining hot-water extracted silk sericin by ethanol-induced precipitation. International Journal of Biological Macromolecules, 2011, 48, 32-37.	7.5	67
53	Miscibility, structural characteristics, and thermal behavior of wet spun regenerated silk fibroin/nylon 6 blend filaments. Fibers and Polymers, 2010, 11, 14-20.	2.1	20
54	Effect of RGDS and KRSR peptides immobilized on silk fibroin nanofibrous mats for cell adhesion and proliferation. Macromolecular Research, 2010, 18, 442-448.	2.4	20

Ім-Сниг Им

#	Article	lF	CITATIONS
55	A comparative study on the dielectric and dynamic mechanical relaxation behavior of the regenerated silk fibroin films. Macromolecular Research, 2009, 17, 785-790.	2.4	13
56	Acceleration effect of sericin on shear-induced β-transition of silk fibroin. Polymer, 2009, 50, 4618-4625.	3.8	24
57	Dissolution and wet spinning of silk fibroin using phosphoric acid/formic acid mixture solvent system. Journal of Applied Polymer Science, 2007, 105, 1605-1610.	2.6	40
58	The effect of casting solvent on the structural characteristics and miscibility of regenerated silk fibroin/Poly(vinyl alcohol) blends. Fibers and Polymers, 2007, 8, 579-585.	2.1	33
59	Metal ion adsorbability of electrospun wool keratose/silk fibroin blend nanofiber mats. Fibers and Polymers, 2007, 8, 271-277.	2.1	48
60	Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption. Journal of Membrane Science, 2007, 302, 20-26.	8.2	206
61	Formation of water-resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post treatments. Polymer, 2005, 46, 4853-4867.	3.8	136
62	Characterization of gelatin nanofiber prepared from gelatin–formic acid solution. Polymer, 2005, 46, 5094-5102.	3.8	528
63	Electro-Spinning and Electro-Blowing of Hyaluronic Acid. Biomacromolecules, 2004, 5, 1428-1436.	5.4	300
64	Wet spinning of silk polymer. International Journal of Biological Macromolecules, 2004, 34, 89-105.	7.5	89
65	Wet spinning of silk polymer. International Journal of Biological Macromolecules, 2004, 34, 107-119.	7.5	150
66	The role of formic acid in solution stability and crystallization of silk protein polymer. International Journal of Biological Macromolecules, 2003, 33, 203-213.	7.5	153
67	Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. International Journal of Biological Macromolecules, 2001, 29, 91-97.	7.5	380
68	Physical properties of silk fibroin/chitosan blend films. Journal of Applied Polymer Science, 2001, 80, 928-934.	2.6	208
69	Structural and thermal characteristics of Antheraea pernyi silk fibroin/chitosan blend film. Polymer, 2001, 42, 6651-6656.	3.8	158