
Alexandru Babes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5798839/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The formalin test does not probe inflammatory pain but excitotoxicity in rodent skin. Physiological Reports, 2022, 10, e15194.	1.7	9
2	Psoralens activate and photosensitize Transient Receptor Potential channels Ankyrin type 1 (TRPA1) and Vanilloid type 1 (TRPV1). European Journal of Pain, 2021, 25, 122-135.	2.8	8
3	Functional expression of the transient receptor potential ankyrin type 1 channel in pancreatic adenocarcinoma cells. Scientific Reports, 2021, 11, 2018.	3.3	16
4	Mini-review: The nociceptive sensory functions of the polymodal receptor Transient Receptor Potential Ankyrin Type 1 (TRPA1). Neuroscience Letters, 2021, 764, 136286.	2.1	14
5	The phospholipase C inhibitor U73122 is a potent agonist of the polymodal transient receptor potential ankyrin type 1 (TRPA1) receptor channel. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393, 177-189.	3.0	10
6	Highâ€dose phenylephrine increases meningeal blood flow through TRPV1 receptor activation and release of calcitonin geneâ€related peptide. European Journal of Pain, 2020, 24, 383-397.	2.8	10
7	Regulation of TRPM8 channel activity by Srcâ€mediated tyrosine phosphorylation. Journal of Cellular Physiology, 2020, 235, 5192-5203.	4.1	17
8	Role of 5â€HT1A and 5â€HT3 receptors in serotonergic activation of sensory neurons in relation to itch and pain behavior in the rat. Journal of Neuroscience Research, 2020, 98, 1999-2017.	2.9	10
9	Neuronal microRNAs modulate TREK two-pore domain K ⁺ channel expression and current density. RNA Biology, 2020, 17, 651-662.	3.1	7
10	Modulation of Transient Receptor Potential (TRP) channels by tyrosine phosphorylation. Reviews in Biological and Biomedical Sciences, 2020, 3, 77-87.	0.1	0
11	Sumatriptan activates TRPA1. Cephalalgia Reports, 2019, 2, 251581631984715.	0.7	1
12	The anthelminthic drug praziquantel is a selective agonist of the sensory transient receptor potential melastatin type 8 channel. Toxicology and Applied Pharmacology, 2017, 336, 55-65.	2.8	31
13	Photosensitization of TRPA1 and TRPV1 by 7-dehydrocholesterol: implications for the Smith–Lemli–Opitz syndrome. Pain, 2017, 158, 2475-2486.	4.2	9
14	Glycolytic metabolite methylglyoxal inhibits cold and menthol activation of the transient receptor potential melastatin type 8 channel. Journal of Neuroscience Research, 2016, 94, 282-294.	2.9	6
15	Photosensitization in Porphyrias and Photodynamic Therapy Involves TRPA1 and TRPV1. Journal of Neuroscience, 2016, 36, 5264-5278.	3.6	66
16	Systemic desensitization through TRPA1 channels by capsazepine and mustard oil - a novel strategy against inflammation and pain. Scientific Reports, 2016, 6, 28621.	3.3	78
17	Transient receptor potential melastatin 8 ion channel in macrophages modulates colitis through a balance-shift in TNF-alpha and interleukin-10 production. Mucosal Immunology, 2016, 9, 1500-1513.	6.0	65
18	Characterization of Functional Transient Receptor Potential Melastatin 8 Channels in Human Pancreatic Ductal Adenocarcinoma Cells. Pancreas, 2014, 43, 795-800.	1.1	19

Alexandru Babes

#	Article	IF	CITATIONS
19	H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO–TRPA1–CGRP signalling pathway. Nature Communications, 2014, 5, 4381.	12.8	324
20	Camphor Activates and Sensitizes Transient Receptor Potential Melastatin 8 (TRPM8) to Cooling and Icilin. Chemical Senses, 2013, 38, 563-575.	2.0	53
21	The anti-diabetic drug glibenclamide is an agonist of the transient receptor potential Ankyrin 1 (TRPA1) ion channel. European Journal of Pharmacology, 2013, 704, 15-22.	3.5	41
22	Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nature Medicine, 2012, 18, 926-933.	30.7	414
23	TRPA1 and Substance P Mediate Colitis in Mice. Gastroenterology, 2011, 141, 1346-1358.	1.3	197
24	TRPM8, a Sensor for Mild Cooling in Mammalian Sensory Nerve Endings. Current Pharmaceutical Biotechnology, 2011, 12, 78-88.	1.6	47
25	The M-Channel Blocker Linopirdine Is an Agonist of the Capsaicin Receptor TRPV1. Journal of Pharmacological Sciences, 2010, 114, 332-340.	2.5	6
26	Electrophysiological and Neurochemical Techniques to Investigate Sensory Neurons in Analgesia Research. Methods in Molecular Biology, 2010, 617, 237-259.	0.9	15
27	Acute and chronic effects of neurotrophic factors BDNF and GDNF on responses mediated by thermo-sensitive TRP channels in cultured rat dorsal root ganglion neurons. Brain Research, 2009, 1284, 54-67.	2.2	43
28	Ion channels involved in cold detection in mammals: TRP and non-TRP mechanisms. Biophysical Reviews, 2009, 1, 193-200.	3.2	12
29	Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature, 2007, 447, 856-859.	27.8	355
30	A high-threshold heat-activated channel in cultured rat dorsal root ganglion neurons resembles TRPV2 and is blocked by gadolinium. European Journal of Neuroscience, 2007, 26, 12-22.	2.6	60
31	Desensitization of cold- and menthol-sensitive rat dorsal root ganglion neurones by inflammatory mediators. Experimental Brain Research, 2007, 178, 89-98.	1.5	88
32	A novel type of coldâ€sensitive neuron in rat dorsal root ganglia with rapid adaptation to cooling stimuli. European Journal of Neuroscience, 2006, 24, 691-698.	2.6	38
33	Two populations of cold-sensitive neurons in rat dorsal root ganglia and their modulation by nerve growth factor. European Journal of Neuroscience, 2004, 20, 2276-2282.	2.6	150
34	Cooling inhibits capsaicin-induced currents in cultured rat dorsal root ganglion neurones. Neuroscience Letters, 2002, 317, 131-134.	2.1	43
35	A cold―and mentholâ€activated current in rat dorsal root ganglion neurones: properties and role in cold transduction. Journal of Physiology, 2002, 545, 595-614.	2.9	193
36	Control of the allosteric equilibrium of hemoglobin by cross-linking agents. Protein Science, 2002, 11, 1376-1383.	7.6	8

#	Article	IF	CITATIONS
37	Slowing of inactivation at positive potentials in a neuronal K+ channel is not due to preferential closed-state inactivation. Biochemical Society Transactions, 2000, 28, A453-A453.	3.4	0
38	Na+ Transport, and the E1P-E2P Conformational Transition of the Na+/K+-ATPase. Biophysical Journal, 2000, 79, 2557-2571.	0.5	17
39	Hofmeister Effects of Anions on the Kinetics of Partial Reactions of the Na + ,K + -ATPase. Biophysical Journal, 1999, 77, 267-281.	0.5	31