
Jean-Paul Richalet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5798508/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling the oxygen transport to the myocardium at maximal exercise at high altitude. Physiological Reports, 2022, 10, e15262.	1.7	5
2	Expert group syndrome at high altitude. Sports Medicine and Health Science, 2022, , .	2.0	0
3	Effect of exercise training in rats exposed to chronic hypoxia: Application for Monge's disease. Physiological Reports, 2021, 9, e14750.	1.7	2
4	The invention of hypoxia. Journal of Applied Physiology, 2021, 130, 1573-1582.	2.5	14
5	Exercising in Hypoxia and Other Stimuli: Heart Rate Variability and Ventilatory Oscillations. Life, 2021, 11, 625.	2.4	7
6	Validation of a Score for the Detection of Subjects with High Risk for Severe High-Altitude Illness. Medicine and Science in Sports and Exercise, 2021, 53, 1294-1302.	0.4	20
7	Impact of High Altitude on Cardiovascular Health: Current Perspectives. Vascular Health and Risk Management, 2021, Volume 17, 317-335.	2.3	50
8	Evaluation of the Lake Louise Score for Acute Mountain Sickness and Its 2018 Version in a Cohort of 484 Trekkers at High Altitude. High Altitude Medicine and Biology, 2021, 22, 353-361.	0.9	10
9	Subâ€maximal aerobic exercise training reduces haematocrit and ameliorates symptoms in Andean highlanders with chronic mountain sickness. Experimental Physiology, 2021, 106, 2198-2209.	2.0	5
10	Rebuttal from Jeanâ€Paul Richalet. Journal of Physiology, 2020, 598, 903-903.	2.9	1
11	CrossTalk opposing view: Barometric pressure, independent of , is not the forgotten parameter in altitude physiology and mountain medicine. Journal of Physiology, 2020, 598, 897-899.	2.9	32
12	Transient Cerebral Ischemia at High Altitude and Hyper-Responsiveness to Hypoxia. High Altitude Medicine and Biology, 2020, 21, 105-108.	0.9	8
13	Low-frequency ventilatory oscillations in hypoxia are a major contributor to the low-frequency component of heart rate variability. European Journal of Applied Physiology, 2019, 119, 1769-1777.	2.5	5
14	Modeling the Evans Blue Dilution Method for the Measurement of Plasma Volume in Small Animals: A New Optimized Method. Annals of Biomedical Engineering, 2018, 46, 2189-2195.	2.5	3
15	Systemic blood pressure at exercise in hypoxia in hypertensive and normotensive patients. Journal of Hypertension, 2017, 35, 2402-2410.	0.5	14
16	Effect of dead space on breathing stability at exercise in hypoxia. Respiratory Physiology and Neurobiology, 2017, 246, 26-32.	1.6	4
17	Reply to Drs. Teppema, Berendsen, and Swenson. Journal of Applied Physiology, 2016, 120, 1492-1492.	2.5	1
18	Ventilatory oscillations at exercise in hypoxia: A mathematical model. Journal of Theoretical Biology, 2016, 411, 92-101.	1.7	8

JEAN-PAUL RICHALET

#	Article	IF	CITATIONS
19	Physiological and Clinical Implications of Adrenergic Pathways at High Altitude. Advances in Experimental Medicine and Biology, 2016, 903, 343-356.	1.6	23
20	Ventilatory oscillations at exercise: effects of hyperoxia, hypercapnia, and acetazolamide. Physiological Reports, 2015, 3, e12446.	1.7	12
21	Electrocardiographic Changes During Exercise in Acute Hypoxia and Susceptibility to Severe High-Altitude Illnesses. Circulation, 2015, 131, 786-794.	1.6	29
22	Periodic breathing in healthy humans at exercise in hypoxia*. Journal of Applied Physiology, 2015, 118, 115-123.	2.5	21
23	Évaluation de la tolérance à l'hypoxie et susceptibilité aux pathologies de haute altitude. Science and Sports, 2015, 30, 355-363.	0.5	7
24	Risk Prediction Score for Severe High Altitude Illness: A Cohort Study. PLoS ONE, 2014, 9, e100642.	2.5	69
25	Physiological Risk Factors for Severe High-Altitude Illness. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 192-198.	5.6	231
26	Ventilatory and cardiac responses to hypoxia at submaximal exercise are independent of altitude and exercise intensity. Journal of Applied Physiology, 2012, 112, 566-570.	2.5	23
27	Ageing and cardiorespiratory response to hypoxia. Journal of Physiology, 2012, 590, 5461-5474.	2.9	51
28	Operation Everest III: COMEX '97. High Altitude Medicine and Biology, 2010, 11, 121-132.	0.9	28
29	Effects of high-altitude hypoxia on the hormonal response to hypothalamic factors. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R1685-R1692.	1.8	45
30	Acetazolamide for Monge's Disease. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 1370-1376.	5.6	80
31	Exercise and hypoxia: The role of the autonomic nervous system. Respiratory Physiology and Neurobiology, 2007, 158, 280-286.	1.6	46
32	Determinants of maximal oxygen uptake in moderate acute hypoxia in endurance athletes. European Journal of Applied Physiology, 2007, 100, 663-673.	2.5	81
33	Autonomic Adaptations in Andean Trained Participants to a 4220-m Altitude Marathon. Medicine and Science in Sports and Exercise, 2005, 37, 2148-2153.	0.4	20
34	Consensus Statement on Chronic and Subacute High Altitude Diseases. High Altitude Medicine and Biology, 2005, 6, 147-157.	0.9	467
35	Acetazolamide. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 1427-1433.	5.6	106
36	Myocardial adrenergic and cholinergic receptor function in hypoxia: correlation with O ₂ transport in exercise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R730-R738.	1.8	28

#	Article	IF	CITATIONS
37	Operation Everest III: role of plasma volume expansion onVË™ <scp>o₂</scp> _{max} during prolonged high-altitude exposure. Journal of Applied Physiology, 2000, 89, 29-37.	2.5	56
38	Operation Everest III (Comex '97): Modifications of Cardiac Function Secondary to Altitude-induced Hypoxia. American Journal of Respiratory and Critical Care Medicine, 2000, 161, 264-270.	5.6	126
39	Operation Everest III (COMEX â€~97). Advances in Experimental Medicine and Biology, 1999, , 297-317.	1.6	37
40	Plasma volume in acute hypoxia: comparison of a carbon monoxide rebreathing method and dye dilution with Evans' blue. European Journal of Applied Physiology, 1998, 77, 457-461.	2.5	29