Lutz H Gade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5797460/publications.pdf

Version: 2024-02-01

127 papers 5,688 citations

94433 37 h-index 71 g-index

134 all docs 134 docs citations

134 times ranked

5153 citing authors

#	Article	IF	CITATIONS
1	Chiral N-heterocyclic carbenes as stereodirecting ligands in asymmetric catalysis. Chemical Society Reviews, 2004, 33, 619-636.	38.1	829
2	Chiral Bis(pyridylimino)isoindoles: A Highly Modular Class of Pincer Ligands for Enantioselective Catalysis. Angewandte Chemie - International Edition, 2008, 47, 4670-4674.	13.8	253
3	Enantioselective Iron-Catalyzed Azidation of \hat{I}^2 -Keto Esters and Oxindoles. Journal of the American Chemical Society, 2013, 135, 5356-5359.	13.7	223
4	Highly Enantioselective Copper-Catalyzed Electrophilic Trifluoromethylation of \hat{l}^2 -Ketoesters. Journal of the American Chemical Society, 2012, 134, 10769-10772.	13.7	216
5	A Modular Assembly of Chiral Oxazolinylcarbene–Rhodium Complexes: Efficient Phosphane-Free Catalysts for the Asymmetric Hydrosilylation of Dialkyl Ketones. Angewandte Chemie - International Edition, 2004, 43, 1014-1017.	13.8	213
6	Transforming Surface Coordination Polymers into Covalent Surface Polymers: Linked Polycondensed Aromatics through Oligomerization of Nâ∈Heterocyclic Carbene Intermediates. Angewandte Chemie - International Edition, 2008, 47, 2414-2417.	13.8	191
7	Copper–Boxmi Complexes as Highly Enantioselective Catalysts for Electrophilic Trifluoromethylthiolations. Chemistry - A European Journal, 2014, 20, 93-97.	3.3	140
8	The Synthesis of a New Class of Chiral Pincer Ligands and Their Applications in Enantioselective Catalytic Fluorinations and the Nozaki–Hiyama–Kishi Reaction. Chemistry - A European Journal, 2011, 17, 14922-14928.	3.3	132
9	Iron Achieves Noble Metal Reactivity and Selectivity: Highly Reactive and Enantioselective Iron Complexes as Catalysts in the Hydrosilylation of Ketones. Journal of the American Chemical Society, 2015, 137, 2456-2459.	13.7	130
10	Band Formation from Coupled Quantum Dots Formed by a Nanoporous Network on a Copper Surface. Science, 2009, 325, 300-303.	12.6	126
11	Mechanismâ€Based Enantiodivergence in Manganese Reduction Catalysis: A Chiral Pincer Complex for the Highly Enantioselective Hydroboration of Ketones. Angewandte Chemie - International Edition, 2017, 56, 8393-8397.	13.8	101
12	Anionic Chiral Tridentate N-Donor Pincer Ligands in Asymmetric Catalysis. Accounts of Chemical Research, 2014, 47, 3162-3173.	15.6	92
13	Aggregation and Contingent Metal/Surface Reactivity of 1,3,8,10â€Tetraazaperopyrene (TAPP) on Cu(111). Chemistry - A European Journal, 2010, 16, 2079-2091.	3.3	89
14	Mechanism of the Iron(II)-Catalyzed Hydrosilylation of Ketones: Activation of Iron Carboxylate Precatalysts and Reaction Pathways of the Active Catalyst. Journal of the American Chemical Society, 2016, 138, 4972-4983.	13.7	89
15	Highly Enantioselective Copper-Catalyzed Alkylation of \hat{l}^2 -Ketoesters and Subsequent Cyclization to Spirolactones/Bi-spirolactones. Journal of the American Chemical Society, 2012, 134, 2946-2949.	13.7	74
16	Double Bonds in Motion: Bis(oxazolinylmethyl)pyrroles and Their Metal-Induced Planarization to a New Class of Rigid Chiral C2-symmetric Complexes. Chemistry - A European Journal, 2003, 9, 1759-1767.	3.3	73
17	Cobalt Alkyl Complexes of a New Family of Chiral 1,3-Bis(2-pyridylimino)isoindolates and Their Application in Asymmetric Hydrosilylation. Inorganic Chemistry, 2012, 51, 12948-12958.	4.0	72
18	Living Radical Polymerization of Acrylates Mediated by 1,3â€Bis(2â€pyridylimino)isoindolatocobalt(II) Complexes: Monitoring the Chain Growth at the Metal. Chemistry - A European Journal, 2008, 14, 10267-10279.	3.3	70

#	Article	IF	CITATIONS
19	Catalytic C–F bond activation of geminal difluorocyclopropanes by nickel(<scp>i</scp>) complexes via a radical mechanism. Chemical Communications, 2016, 52, 202-205.	4.1	70
20	Using a Tripod as a Chiral Chelating Ligand: Chemical Exchange Between Equivalent Molecular Structures in Palladium Catalysis with $1,1,1$ -Tris(oxazolinyl)ethane ($\hat{a} \in \mathbb{C}$ Trisox $\hat{a} \in \mathbb{C}$). Chemistry - A European Journal, 2007, 13, 5994-6008.	3.3	67
21	Tetrachlorinated Tetraazaperopyrenes (TAPPs): Highly Fluorescent Dyes and Semiconductors for Airâ€stable Organic nâ€Channel Transistors and Complementary Circuits. Chemistry - A European Journal, 2012, 18, 3498-3509.	3.3	65
22	Controlling the Dimensionality of On-Surface Coordination Polymers via Endo- or Exoligation. Journal of the American Chemical Society, 2014, 136, 9355-9363.	13.7	65
23	A readily accessible PNP pincer ligand with a pyrrole backbone and its Nil/II chemistry. Dalton Transactions, 2012, 41, 14028.	3.3	64
24	STM fingerprint of molecule–adatom interactions in a self-assembled metal–organic surface coordination network on Cu(111). Physical Chemistry Chemical Physics, 2010, 12, 8815.	2.8	62
25	On-surface synthesis of a two-dimensional porous coordination network: Unraveling adsorbate interactions. Physical Review B, 2014, 90, .	3.2	61
26	Stereoselective Hydrodehalogenation via a Radicalâ€Based Mechanism Involving Tâ€Shaped Chiral Nickel(I) Pincer Complexes. Chemistry - A European Journal, 2014, 20, 9657-9665.	3.3	60
27	The More Goldâ€"The More Enantioselective: Cyclohydroaminations of γâ€Allenyl Sulfonamides with Monoâ€, Bisâ€, and Trisphospholane Gold(I) Catalysts. Chemistry - A European Journal, 2012, 18, 3721-3728.	3.3	59
28	A Bis(oxazolinyl)pyrrole as a New Monoanionic Tridentate Supporting Ligand:  Synthesis of a Highly Active Palladium Catalyst for Suzuki-Type Câ^'C Coupling. Organometallics, 2001, 20, 4144-4146.	2.3	57
29	Group 4 Imido Complexes Stabilized by a Tridentate Diamido-Donor Ligand. Inorganic Chemistry, 2001, 40, 870-877.	4.0	56
30	One-Pot Sequential Kinetic Profiling of a Highly Reactive Manganese Catalyst for Ketone Hydroboration: Leveraging İf-Bond Metathesis via Alkoxide Exchange Steps. Journal of the American Chemical Society, 2018, 140, 9244-9254.	13.7	53
31	Bis(2-pyridylimino)isoindolato iron(ii) and cobalt(ii) complexes: Structural chemistry and paramagnetic NMR spectroscopy. Dalton Transactions, 2011, 40, 10406.	3.3	49
32	Electronic structure and reactivity of nickel(<scp>i</scp>) pincer complexes: their aerobic transformation to peroxo species and site selective Câ€"H oxygenation. Chemical Science, 2016, 7, 3533-3542.	7.4	44
33	Radical Changes in Lewis Acid Catalysis: Matching Metal and Substrate. Angewandte Chemie - International Edition, 2016, 55, 7852-7856.	13.8	41
34	Tetraazaperopyrenes: A New Class of Multifunctional Chromophores. Chemistry - A European Journal, 2007, 13, 7317-7329.	3.3	40
35	Structural Characterization of a Hydroperoxo Nickel Complex and Its Autoxidation: Mechanism of Interconversion between Peroxo, Superoxo, and Hydroperoxo Species. Angewandte Chemie - International Edition, 2015, 54, 4880-4884.	13.8	40
36	Chiral Ditopic Cyclophosphazane (CycloP) Ligands: Synthesis, Coordination Chemistry, and Application in Asymmetric Catalysis. Chemistry - A European Journal, 2013, 19, 13823-13837.	3.3	39

#	Article	IF	CITATIONS
37	Ultrafast Ironâ€Catalyzed Reduction of Functionalized Ketones: Highly Enantioselective Synthesis of Halohydrines, Oxaheterocycles, and Aminoalcohols. Angewandte Chemie - International Edition, 2018, 57, 10231-10235.	13.8	38
38	A Waterâ€Soluble Tetraazaperopyrene Dye as Strong Gâ€Quadruplex DNA Binder. Chemistry - A European Journal, 2016, 22, 6314-6322.	3.3	37
39	Regioselective hydrosilylation of epoxides catalysed by nickel(<scp>ii</scp>) hydrido complexes. Chemical Communications, 2017, 53, 4308-4311.	4.1	37
40	Taking Solution Proton NMR to Its Extreme: Prediction and Detection of a Hydride Resonance in an Intermediate-Spin Iron Complex. Journal of the American Chemical Society, 2018, 140, 17413-17417.	13.7	37
41	Achiral and Chiral PNP-Pincer Ligands with a Carbazole Backbone: Coordination Chemistry with d ⁸ Transition Metals. Inorganic Chemistry, 2013, 52, 2050-2059.	4.0	36
42	Core Halogenation as a Construction Principle in Tuning the Material Properties of Tetraazaperopyrenes. Chemistry - A European Journal, 2015, 21, 17691-17700.	3.3	35
43	Synthesis, Characterization, and Reactivity of a <i>High-Spin</i> Iron(II) Hydrido Complex Supported by a PNP Pincer Ligand and Its Application as a Homogenous Catalyst for the Hydrogenation of Alkenes. Inorganic Chemistry, 2018, 57, 3183-3191.	4.0	35
44	Square Planar Cobalt(II) Hydride versus T-Shaped Cobalt(I): Structural Characterization and Dihydrogen Activation with PNP–Cobalt Pincer Complexes. Inorganic Chemistry, 2019, 58, 6102-6113.	4.0	35
45	Coreâ€Brominated Tetraazaperopyrenes as nâ€Channel Semiconductors for Organic Complementary Circuits on Flexible Substrates. Advanced Functional Materials, 2013, 23, 3866-3874.	14.9	34
46	Synthesis and Reactivity of Group 4 Metal Benzyl Complexes Supported by Carbazolide-Based PNP Pincer Ligands. Inorganic Chemistry, 2016, 55, 353-365.	4.0	33
47	Reaction Pathways and Redox States in αâ€Selective Cobaltâ€Catalyzed Hydroborations of Alkynes. Angewandte Chemie - International Edition, 2020, 59, 23010-23014.	13.8	33
48	Allylic Peroxidations with Bis(2-pyridylimino)isoindolato-Cobalt and -Iron Complexes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2004, 630, 1962-1968.	1.2	32
49	Mechanismâ€Based Enantiodivergence in Manganese Reduction Catalysis: A Chiral Pincer Complex for the Highly Enantioselective Hydroboration of Ketones. Angewandte Chemie, 2017, 129, 8513-8517.	2.0	32
50	Bis(oxazolinylmethyl)pyrrole Derivatives and Their Coordination as Chiral "Pincer―Ligands to Rhodium. Inorganic Chemistry, 2009, 48, 8523-8535.	4.0	31
51	Interplay of weak interactions in the atom-by-atom condensation of xenon within quantum boxes. Nature Communications, 2015, 6, 6071.	12.8	30
52	Activation of Aryl Halides by Nickel(I) Pincer Complexes: Reaction Pathways of Stoichiometric and Catalytic Dehalogenations. Inorganic Chemistry, 2016, 55, 8214-8224.	4.0	30
53	Borohydride intermediates pave the way for magnesium-catalysed enantioselective ketone reduction. Chemical Communications, 2020, 56, 1203-1206.	4.1	30
54	Charging and Deforming the Pybox Ligand: Enantiomerically Pure Double Helices and Their Interconversion. Chemistry - A European Journal, 2002, 8, 4308-4318.	3.3	28

#	Article	IF	Citations
55	Substitutent Effects in the Periphery of 2,9-Bisaryl-tetraazaperopyrene Dyes. Journal of Organic Chemistry, 2011, 76, 609-617.	3.2	28
56	Synthesis, Characterization, and Thermal Rearrangement of Zirconium Tetraazadienyl and Pentaazadienyl Complexes. Organometallics, 2012, 31, 4504-4515.	2.3	28
57	The fixation of bis(2-pyridylimino)isoindolato (BPI) ligands to dendritic carbosilanes. Dalton Transactions, 2005, , 1403.	3.3	27
58	Bis(pyridylimino)isoindolatoâ^'Iridium Complexes as Epoxidation Catalysts for Alkenes. Organometallics, 2011, 30, 379-382.	2.3	27
59	Giant Residual Dipolar ¹³ C– ¹ H Couplings in Highâ€Spin Organoiron Complexes: Elucidation of Their Structures in Solution by ¹³ Câ€NMR Spectroscopy. Chemistry - A European Journal, 2013, 19, 1599-1606.	3.3	27
60	Extending N-heterocyclic carbene ligands into the third dimension: a new type of hybrid phosphazane/NHC system. Chemical Science, 2015, 6, 2506-2510.	7.4	27
61	η ⁶ â€Areneâ€Zirconiumâ€PNPâ€Pincer Complexes: Mechanism of Their Hydrogenolytic Formation and Their Reactivity as Zirconium(II) Synthons. Chemistry - A European Journal, 2016, 22, 9283-9292.	3.3	27
62	A Readily Accessible Chiral NNN Pincer Ligand with a Pyrrole Backbone and Its Ni(II) Chemistry: Syntheses, Structural Chemistry, and Bond Activations. Inorganic Chemistry, 2017, 56, 3631-3643.	4.0	25
63	Bis(oxazolinylmethyl) Derivatives of C4H4E Heterocycles (E = NH, O, S) asC2-Chiral Meridionally Coordinating Ligands for Nickel and Chromium. European Journal of Inorganic Chemistry, 2009, 2009, 4950-4961.	2.0	24
64	Chromophores, Fluorophores and Robust Ancillary Ligands for Molecular Catalysts: 1,3â€Bis(2â€pyridylimino)isoindolines. European Journal of Inorganic Chemistry, 2014, 2014, 4715.	2.0	24
65	Bis(pyridylimino)isoindolato (BPI) Osmium Complexes: Structural Chemistry and Reactivity. Organometallics, 2015, 34, 2810-2818.	2.3	24
66	Phosphines and <i>N</i> â∈Heterocycles Joining Forces: an Emerging Structural Motif in PNPâ∈Pincer Chemistry. European Journal of Inorganic Chemistry, 2020, 2020, 2023-2042.	2.0	24
67	Borane-Bridged Ruthenium Complex Bearing a PNP Ligand: Synthesis and Structural Characterization. Organometallics, 2015, 34, 5113-5118.	2.3	23
68	Spin Density Distribution in Iron(II) and Cobalt(II) Alkyl Complexes Containing 1,3-Bis(2-pyridylimino)isoindolate Ligands. Organometallics, 2013, 32, 885-892.	2.3	22
69	Iridium Half-Sandwich Complexes with Di- and Tridentate Bis(pyridylimino)isoindolato Ligands: Stoichiometric and Catalytic Reactivity. Organometallics, 2015, 34, 2326-2342.	2.3	22
70	A Modular Approach to Inorganic Phosphazane Macrocycles. Angewandte Chemie - International Edition, 2017, 56, 9087-9090.	13.8	22
71	Iridium Complexes Containing a PNP Pincer Ligand: Syntheses, Structural Chemistry, and Bond Activations. European Journal of Inorganic Chemistry, 2013, 2013, 5358-5365.	2.0	21
72	Opening up the Valence Shell: A T‧haped Iron(I) Metalloradical and Its Potential for Atom Abstraction. Angewandte Chemie - International Edition, 2020, 59, 9448-9452.	13.8	21

#	Article	IF	CITATIONS
73	Tuning Redox Chemistry and Photophysics in Coreâ€Substituted Tetraazaperopyrenes (TAPPs). Chemistry - A European Journal, 2013, 19, 13811-13822.	3.3	20
74	Highly emissive water-soluble tetraazaperopyrenes as fluorescent markers. Chemical Communications, 2014, 50, 4941-4943.	4.1	20
75	The open d-shell enforces the active space in 3d metal catalysis: highly enantioselective chromium(<scp>ii</scp>) pincer catalysed hydrosilylation of ketones. Chemical Communications, 2018, 54, 9139-9142.	4.1	20
76	Synthesis and structural chemistry of bis(pyridylimino)isoindolato–ruthenium complexes and their activity as mediators in the atom transfer radical polymerization (ATRP) of styrene. Journal of Organometallic Chemistry, 2011, 696, 1425-1431.	1.8	19
77	Substrate-Directed Growth of <i>N</i> -Heteropolycyclic Molecules on a Metal Surface. Journal of Physical Chemistry C, 2016, 120, 2866-2873.	3.1	19
78	(Oligo-)Thiophene Functionalized Tetraazaperopyrenes: Donor–Acceptor Dyes and Ambipolar Organic Semiconductors. Journal of Organic Chemistry, 2017, 82, 12492-12502.	3.2	19
79	Coordination Chemistry of the PdmBOX Pincer Ligand: Reactivity at the Metal and the Ligand. European Journal of Inorganic Chemistry, 2017, 2017, 5545-5556.	2.0	18
80	Tackling N â€Alkyl Imines with 3d Metal Catalysis: Highly Enantioselective Ironâ€Catalyzed Synthesis of αâ€Chiral Amines. Angewandte Chemie - International Edition, 2020, 59, 15974-15977.	13.8	18
81	Toward a Neutral Single-Component Amidinate Iodide Aluminum Catalyst for the CO ₂ Fixation into Cyclic Carbonates. Inorganic Chemistry, 2021, 60, 1172-1182.	4.0	18
82	Radical Changes in Lewis Acid Catalysis: Matching Metal and Substrate. Angewandte Chemie, 2016, 128, 7983-7987.	2.0	17
83	Observability of Paramagnetic NMR Signals at over 10 000 ppm Chemical Shifts. Angewandte Chemie - International Edition, 2021, 60, 22856-22864.	13.8	17
84	Configuring Electronic States in an Atomically Precise Array of Quantum Boxes. Small, 2016, 12, 3757-3763.	10.0	16
85	<i>NNNâ€</i> Cobalt(II) Pincer Complexes: Paramagnetic NMR Spectroscopy in Solution and Application as Hydrosilylation Catalysts. European Journal of Inorganic Chemistry, 2020, 2020, 2335-2342.	2.0	16
86	New Chemistry with Anionic NNN Pincer Ligands. Topics in Organometallic Chemistry, 2015, , 179-208.	0.7	15
87	Cationic BPIâ€Gold(III) Complexes: Controlling Ligating and Nonligating Anions. European Journal of Inorganic Chemistry, 2016, 2016, 1184-1191.	2.0	15
88	How adsorbates alter the metallic behavior of quasi-1D electron systems of the Si(5 5 3)-Au surface. Journal of Physics Condensed Matter, 2019, 31, 195001.	1.8	14
89	Metalloradical Reactivity, Charge Transfer, and Atom Abstractions in a T-Shaped Iron(I) Complex. Inorganic Chemistry, 2021, 60, 3927-3938.	4.0	14
90	Dehydrogenative coupling of 4-substituted pyridines mediated by a zirconium(ii) synthon: reaction pathways and dead ends. Chemical Science, 2018, 9, 5223-5232.	7.4	13

#	Article	IF	Citations
91	Towards Nitrogenâ€Rich Nâ€Heteropolycycles: Synthesis of Octaazaperopyrenes (OAPP). Chemistry - A European Journal, 2022, 28, .	3.3	13
92	A versatile hard–soft N/S-ligand for metal coordination and cluster formation. Chemical Communications, 2016, 52, 9683-9686.	4.1	12
93	Ultrafast Ironâ€Catalyzed Reduction of Functionalized Ketones: Highly Enantioselective Synthesis of Halohydrines, Oxaheterocycles, and Aminoalcohols. Angewandte Chemie, 2018, 130, 10388-10392.	2.0	12
94	Twisting the TAPPs: Bay â€Substituted Nonâ€planar Tetraazaperoâ€pyrenes and their Reduced Anions. Chemistry - A European Journal, 2019, 25, 14669-14678.	3.3	12
95	Synthesis and structures of [Sî€(H)P(ν-NR)] ₂ , potential building blocks for inorganic phosphorus–sulfur macrocycles. Dalton Transactions, 2015, 44, 14242-14247.	3.3	11
96	A Modular Approach to Inorganic Phosphazane Macrocycles. Angewandte Chemie, 2017, 129, 9215-9218.	2.0	10
97	3d Metal Complexes in T-shaped Geometry as a Gateway to Metalloradical Reactivity. Accounts of Chemical Research, 2022, 55, 857-868.	15.6	10
98	Azaphilic versus Carbophilic Coupling at Ci£¾N Bonds: Key Steps in Titaniumâ€Assisted Multicomponent Reactions. Chemistry - A European Journal, 2015, 21, 18730-18738.	3.3	9
99	Understanding UV–Vis Spectra of Halogenated Tetraazaperopyrenes (TAPPs): A Computational Study. Journal of Physical Chemistry A, 2019, 123, 3160-3169.	2.5	9
100	Reaction Pathways and Redox States in αâ€Selective Cobaltâ€Catalyzed Hydroborations of Alkynes. Angewandte Chemie, 2020, 132, 23210-23214.	2.0	9
101	Single or Paired? Structure and Reactivity of PNP-Chromium(II) Hydrides. Inorganic Chemistry, 2020, 59, 14526-14535.	4.0	9
102	Perhalogenated Tetraazaperopyrenes and Their Corresponding Mono- and Dianions. Organic Letters, 2020, 22, 2298-2302.	4.6	9
103	Structures, Electronics, and Reactivity of Strained Phosphazane Cages: A Combined Experimental and Computational Study. Inorganic Chemistry, 2015, 54, 7636-7644.	4.0	8
104	Tetralithiated Tetraazaperopyrene as a Key Intermediate for the Synthesis of Functionalized Derivatives. Organic Letters, 2015, 17, 2266-2269.	4.6	8
105	Ti(OiPr)4-Mediated Multicomponent Reactions Involving Triple Additions to Isonitrile Carbon Atoms. Organic Letters, 2016, 18, 5182-5185.	4.6	8
106	Ultrafast Singlet Fission and Intersystem Crossing in Halogenated Tetraazaperopyrenes. Journal of Physical Chemistry A, 2020, 124, 7857-7868.	2.5	7
107	Tackling N â€Alkyl Imines with 3d Metal Catalysis: Highly Enantioselective Ironâ€Catalyzed Synthesis of αâ€Chiral Amines. Angewandte Chemie, 2020, 132, 16108-16111.	2.0	7
108	Band Formation at Interfaces Between N-Heteropolycycles and Gold Electrodes. Journal of Physical Chemistry Letters, 2021, 12, 947-951.	4.6	7

#	Article	IF	CITATIONS
109	Expanding the Boxmi Ligand Family: Synthesis and Application of NON and NSN Ligands. Journal of Organic Chemistry, 2020, 85, 6719-6731.	3.2	6
110	A modular approach to neutral P,N-ligands: synthesis and coordination chemistry. Beilstein Journal of Organic Chemistry, 2016, 12, 846-853.	2.2	5
111	Isolation and structural characterization of a titanacyclopropane as key intermediate in the double aryl Grignard addition to 2-(arylethynyl)pyridine derivatives. Chemical Communications, 2018, 54, 2228-2231.	4.1	4
112	Synthesis and Structural Characterization of Group 10 Metal Complexes Bearing an Amidodiphosphine Pincer Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 1011-1017.	1.2	4
113	Watching nanostructure growth: kinetically controlled diffusion and condensation of Xe in a surface metal organic network. Nanoscale, 2019, 11, 4895-4903.	5.6	4
114	Öffnung der Valenzschale: Ein Tâ€förmiges Eisen(I)â€Metalloradikal und sein Potential als Atomabstraktor. Angewandte Chemie, 2020, 132, 9535-9539.	2.0	4
115	Luminogens for Aggregationâ€Induced Emission via Titaniumâ€Mediated Double Nucleophilic Addition to 2,5â€Dialkynylpyridines: Formation and Transformation of the Emitting Aggregates. Chemistry - A European Journal, 2020, 26, 4269-4280.	3.3	3
116	Reactivity of a T-shaped cobalt(<scp>i</scp>) pincer-complex. Dalton Transactions, 2021, 50, 6802-6810.	3.3	3
117	Deposition-Dependent Morphology and Infrared Vibrational Spectra of Brominated Tetraazaperopyrene Layers. Journal of Physical Chemistry C, 2020, 124, 769-779.	3.1	2
118	Trapping an unusual pentacoordinate carbon atom in a neutral trialuminum complex. Chemical Communications, 2021, 57, 10327-10330.	4.1	2
119	Visualizing the Active Paths in Morphologically Defective Organic Thinâ€Film Transistors. Advanced Electronic Materials, 2021, 7, 2100400.	5.1	2
120	Electronic Properties of Tetraazaperopyrene Derivatives on Au(111): Energy-Level Alignment and Interfacial Band Formation. Journal of Physical Chemistry C, 2021, 125, 19969-19979.	3.1	2
121	Interface properties and dopability of an organic semiconductor: TAPP-Br variable as molecule but inert in the condensed phase. Journal of Materials Chemistry C, 2020, 8, 9898-9908.	5 . 5	1
122	Observability of paramagnetic NMR signals at over 10 000 ppm chemical shifts. Angewandte Chemie, 2021, 133, 23038.	2.0	1
123	Rýcktitelbild: A Modular Approach to Inorganic Phosphazane Macrocycles (Angew. Chem. 31/2017). Angewandte Chemie, 2017, 129, 9370-9370.	2.0	0
124	Luminogens for Aggregationâ€Induced Emission via Titaniumâ€Mediated Double Nucleophilic Addition to 2,5â€Dialkynylpyridines: Formation and Transformation of the Emitting Aggregates. Chemistry - A European Journal, 2020, 26, 4169-4169.	3.3	0
125	The ADUC Prizes: Early Recognition at a Crucial Stage of an Academic Career. European Journal of Inorganic Chemistry, 2021, 2021, 1015-1015.	2.0	0
126	Site-Specific Coordination Chemistry and Beyond: Novel Properties in Low Dimensional Supramolecular Architectures of Porphins at Surfaces. ECS Meeting Abstracts, 2019, , .	0.0	0

#	Article	IF	CITATIONS
127	On-Surface Supramolecular Chemistry with Porphyrins and Phthalocyanines: An Architectural Concept Leading to Engineered Quantum-Functional Nanostructures. ECS Meeting Abstracts, 2020, MA2020-01, 928-928.	0.0	0