
William B Brinckerhoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/57962/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1242777.	12.6	687
2	Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1243480.	12.6	508
3	Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover. Science, 2014, 343, 1244797.	12.6	475
4	The Sample Analysis at Mars Investigation and Instrument Suite. Space Science Reviews, 2012, 170, 401-478.	8.1	435
5	Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2015, 120, 495-514.	3.6	375
6	Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover. Astrobiology, 2017, 17, 471-510.	3.0	371
7	Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science, 2013, 341, 1238937.	12.6	367
8	X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater. Science, 2013, 341, 1238932.	12.6	327
9	Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover. Science, 2013, 341, 263-266.	12.6	327
10	Martian Fluvial Conglomerates at Gale Crater. Science, 2013, 340, 1068-1072.	12.6	326
11	Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1245267.	12.6	323
12	Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. Journal of Geophysical Research E: Planets, 2013, 118, 1955-1973.	3.6	306
13	Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science, 2013, 341, 1239505.	12.6	280
14	Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1244734.	12.6	246
15	Isotope Ratios of H, C, and O in CO ₂ and H ₂ O of the Martian Atmosphere. Science, 2013, 341, 260-263.	12.6	241
16	In Situ Radiometric and Exposure Age Dating of the Martian Surface. Science, 2014, 343, 1247166.	12.6	224
17	Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars. Science, 2013, 341, 1238670.	12.6	215
18	The NASA Roadmap to Ocean Worlds. Astrobiology, 2019, 19, 1-27.	3.0	209

#	Article	IF	CITATIONS
19	The Mars Organic Molecule Analyzer (MOMA) Instrument: Characterization of Organic Material in Martian Sediments. Astrobiology, 2017, 17, 655-685.	3.0	185
20	The Petrochemistry of Jake_M: A Martian Mugearite. Science, 2013, 341, 1239463.	12.6	134
21	Low Upper Limit to Methane Abundance on Mars. Science, 2013, 342, 355-357.	12.6	103
22	Science Potential from a Europa Lander. Astrobiology, 2013, 13, 740-773.	3.0	98
23	Magnetic Dipoleâ^'Dipole Interactions and Single-Ion Anisotropy:  Revisiting a Classical Approach to Magnets. Chemistry of Materials, 1997, 9, 2156-2163.	6.7	89
24	Science Goals and Objectives for the Dragonfly Titan Rotorcraft Relocatable Lander. Planetary Science Journal, 2021, 2, 130.	3.6	80
25	Laser time-of-flight mass spectrometry for space. Review of Scientific Instruments, 2000, 71, 536-545.	1.3	64
26	Revealing the Mysteries of Venus: The DAVINCI Mission. Planetary Science Journal, 2022, 3, 117.	3.6	62
27	MOMA: the challenge to search for organics and biosignatures on Mars. International Journal of Astrobiology, 2016, 15, 239-250.	1.6	52
28	Compact twoâ€step laser timeâ€ofâ€flight mass spectrometer for <i>in situ</i> analyses of aromatic organics on planetary missions. Rapid Communications in Mass Spectrometry, 2012, 26, 2786-2790.	1.5	42
29	Science Goals and Mission Architecture of the Europa Lander Mission Concept. Planetary Science Journal, 2022, 3, 22.	3.6	42
30	Mars Organic Molecule Analyzer (MOMA) laser desorption/ionization source design and performance characterization. International Journal of Mass Spectrometry, 2017, 422, 177-187.	1.5	40
31	The next frontier for planetary and human exploration. Nature Astronomy, 2019, 3, 116-120.	10.1	39
32	Miniature time-of-flight mass spectrometer using a flexible circuitboard reflector. Rapid Communications in Mass Spectrometry, 2000, 14, 2408-2411.	1.5	35
33	Detection of Trace Organics in Mars Analog Samples Containing Perchlorate by Laser Desorption/Ionization Mass Spectrometry. Astrobiology, 2015, 15, 104-110.	3.0	33
34	Did life exist on Mars? Search for organic and inorganic signatures, one of the goals for "SAM― (sample analysis at Mars). Advances in Space Research, 2004, 33, 2240-2245.	2.6	32
35	Magnetization and dynamics of reentrant ferrimagnetic spin-glass [MnTPP]::+[TCNE].â^'â‹2PhMe. Journal of Applied Physics, 1996, 79, 6147.	2.5	31
36	Influence of trace aromatics on the chemical growth mechanisms of Titan aerosol analogues. Planetary and Space Science, 2017, 140, 27-34.	1.7	27

#	Article	IF	CITATIONS
37	Magnetic Ground State and its Control in Porphyrin-Based Magnets. Molecular Crystals and Liquid Crystals, 1997, 305, 321-332.	0.3	24
38	Molecular synthesis in hypervelocity impact plasmas on the primitive Earth and in interstellar clouds. Geophysical Research Letters, 2003, 30, n/a-n/a.	4.0	24
39	Radiation Tolerance of Nanopore Sequencing Technology for Life Detection on Mars and Europa. Scientific Reports, 2019, 9, 5370.	3.3	23
40	Miniature time-of-flight mass spectrometers for in situ composition studies. Acta Astronautica, 2003, 52, 397-404.	3.2	22
41	Laser Desorption Mass Spectrometry at Saturn's moon Titan. International Journal of Mass Spectrometry, 2021, 470, 116707.	1.5	22
42	Mars Organic Molecule Analyzer (MOMA) mass spectrometer for ExoMars 2018 and beyond. , 2013, , .		21
43	Coordinated analyses of Antarctic sediments as Mars analog materials using reflectance spectroscopy and current flight-like instruments for CheMin, SAM and MOMA. Icarus, 2013, 224, 309-325.	2.5	21
44	Planetary Mass Spectrometry for Agnostic Life Detection in the Solar System. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	19
45	Development of an evolved gas-time-of-flight mass spectrometer for the Volatile Analysis by Pyrolysis of Regolith (VAPoR) instrument. International Journal of Mass Spectrometry, 2010, 295, 124-132.	1.5	18
46	Design and demonstration of the Mars Organic Molecule Analyzer (MOMA) on the ExoMars 2018 rover. , 2015, , .		17
47	On the possible in situ elemental analysis of small bodies with laser ablation TOF-MS. Planetary and Space Science, 2005, 53, 817-838.	1.7	14
48	Searching for Traces of Life With the ExoMars Rover. , 2018, , 309-347.		14
49	Magnetization of High-T _c Molecule-Based Magnet V/TCNE/CH ₂ Cl ₂ . Molecular Crystals and Liquid Crystals, 1995, 272, 195-205.	0.3	13
50	Pulsed laser ablation TOF-MS analysis of planets and small bodies. Applied Physics A: Materials Science and Processing, 2004, 79, 953-956.	2.3	13
51	A miniature MEMS and NEMS enabled time-of-flight mass spectrometer for investigations in planetary science. Proceedings of SPIE, 2008, , .	0.8	12
52	The Characterization of Biosignatures in Caves Using an Instrument Suite. Astrobiology, 2017, 17, 1203-1218.	3.0	11
53	Investigating the effects of gamma radiation on selected chemicals for use in biosignature detection instruments on the surface of Jupiter's moon Europa. Planetary and Space Science, 2019, 175, 1-12.	1.7	11

54 An AOTF-LDTOF spectrometer suite for in situ organic detection and characterization., 2011,,.

10

#	Article	IF	CITATIONS
55	The laser ablation ion funnel: Sampling for in situ mass spectrometry on Mars. Planetary and Space Science, 2011, 59, 387-393.	1.7	10
56	IR resonance-enhanced organic detection with two-step laser desorption time-of-flight mass spectrometry. Icarus, 2018, 299, 15-21.	2.5	10
57	Simulation of a miniature, low-power time-of-flight mass spectrometer for in situ analysis of planetary atmospheres. Proceedings of SPIE, 2008, , .	0.8	9
58	Possible synthesis of organic molecular ions in plasmas similar to those generated in hypervelocity Impacts. International Journal of Impact Engineering, 2003, 29, 449-458.	5.0	8
59	Rapid assessment of high value samples: An AOTF-LDTOF spectrometer suite for planetary surfaces. , 2012, , .		8
60	Excess of l-alanine in amino acids synthesized in a plasma torch generated by a hypervelocity meteorite impact reproduced in the laboratory. Planetary and Space Science, 2016, 131, 70-78.	1.7	8
61	A prospective microwave plasma source for <i>in situ</i> spaceflight applications. Journal of Analytical Atomic Spectrometry, 2020, 35, 2740-2747.	3.0	8
62	Carbonization in Titan Tholins: implication for low albedo on surfaces of Centaurs and trans-Neptunian objects. International Journal of Astrobiology, 2016, 15, 231-238.	1.6	7
63	Europan Molecular Indicators of Life Investigation (EMILI) for a Future Europa Lander Mission. Frontiers in Space Technologies, 2022, 2, .	1.4	7
64	A compact tandem two-step laser time-of-flight mass spectrometer for in situ analysis of non-volatile organics on planetary surfaces. , 2014, , .		6
65	Molecular analyzer for Complex Refractory Organic-rich Surfaces (MACROS). , 2017, , .		5
66	Unique capabilities of AC frequency scanning and its implementation on a Mars Organic Molecule Analyzer linear ion trap. Analyst, The, 2017, 142, 2109-2117.	3.5	5
67	ExoMars Mars Organic Molecule Analyzer (MOMA) Laser Desorption/Ionization Mass Spectrometry (LDI-MS) Analysis of Phototrophic Communities from a Silica-Depositing Hot Spring in Yellowstone National Park, USA. Astrobiology, 2021, 21, 1515-1525.	3.0	5
68	Non-Robotic Science Autonomy Development. , 2021, 53, .		5
69	Science Autonomy and the ExoMars Mission: Machine Learning to Help Find Life on Mars. Computer, 2021, 54, 69-77.	1.1	5
70	Linear Ion Trap Mass Spectrometer (LITMS) for in situ Astrobiology. , 2019, , .		3
71	Science Autonomy and Space Science: Application to the ExoMars Mission. Frontiers in Astronomy and Space Sciences, 2022, 9, .	2.8	3
72	Precision Subsampling System for Mars and Beyond. , 2010, , .		2

5

#	Article	IF	CITATIONS
73	Precision Subsampling System for Planetary Exploration. , 2012, , .		2
74	Tandem mass spectrometry on a miniaturized laser desorption time-of-flight mass spectrometer. , 2016, , .		2
75	A comparative study of in situ biosignature detection spectroscopy techniques on planetary surfaces. , 2014, , .		1
76	Analysis of aqueous environments by laser desorption/ionization time-of-flight mass spectrometry. , 2015, , .		1
77	Advanced laser architecture for the two-step laser tandem mass spectrometer. , 2016, , .		1
78	EMILI: Europan Molecular Indicators of Life Investigation. , 2018, , .		1
79	Development of a compact ion trap - time-of-flight mass spectrometer for space missions. , 2021, , .		0
80	Future planetary instrument capabilities made possible by micro- and nanotechnology. , 2019, , .		0