Norikazu Maeda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5796085/publications.pdf

Version: 2024-02-01

159585 123424 6,588 61 30 61 citations h-index g-index papers 69 69 69 8094 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nature Medicine, 2002, 8, 731-737.	30.7	1,908
2	Androgens Decrease Plasma Adiponectin, an Insulin-Sensitizing Adipocyte-Derived Protein. Diabetes, 2002, 51, 2734-2741.	0.6	709
3	Induction of Adiponectin, a Fat-Derived Antidiabetic and Antiatherogenic Factor, by Nuclear Receptors. Diabetes, 2003, 52, 1655-1663.	0.6	685
4	Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin. Gastroenterology, 2003, 125, 1796-1807.	1.3	447
5	Uric Acid Secretion from Adipose Tissue and Its Increase in Obesity. Journal of Biological Chemistry, 2013, 288, 27138-27149.	3.4	279
6	Natriuretic Peptides Enhance the Production of Adiponectin in Human Adipocytes and in Patients With Chronic Heart Failure. Journal of the American College of Cardiology, 2009, 53, 2070-2077.	2.8	225
7	Blockade of mineralocorticoid receptor reverses adipocyte dysfunction and insulin resistance in obese mice. Cardiovascular Research, 2009, 84, 164-172.	3.8	204
8	Adiponectin I164T mutation is associated with the metabolic syndrome and coronary artery disease. Journal of the American College of Cardiology, 2004, 43, 1195-1200.	2.8	182
9	Adiponectin Protects Against Angiotensin II–Induced Cardiac Fibrosis Through Activation of PPAR-α. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 863-870.	2.4	166
10	Adaptation to fasting by glycerol transport through aquaporin 7 in adipose tissue. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17801-17806.	7.1	160
11	Effects of Peroxisome Proliferator-Activated Receptor Ligands, Bezafibrate and Fenofibrate, on Adiponectin Level. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 635-641.	2.4	127
12	Adiponectin/T-cadherin system enhances exosome biogenesis and decreases cellular ceramides by exosomal release. JCI Insight, 2018, 3, .	5.0	122
13	Metabolic impact of adipose and hepatic glycerol channels aquaporin 7 and aquaporin 9. Nature Clinical Practice Endocrinology and Metabolism, 2008, 4, 627-634.	2.8	98
14	Adiponectin association with Tâ€cadherin protects against neointima proliferation and atherosclerosis. FASEB Journal, 2017, 31, 1571-1583.	0.5	95
15	Adiponectin Stimulates Exosome Release to Enhance Mesenchymal Stem-Cell-Driven Therapy of Heart Failure in Mice. Molecular Therapy, 2020, 28, 2203-2219.	8.2	86
16	Positive Feedback Regulation Between Adiponectin and T-Cadherin Impacts Adiponectin Levels in Tissue and Plasma of Male Mice. Endocrinology, 2015, 156, 934-946.	2.8	78
17	Adiponectin, a unique adipocyte-derived factor beyond hormones. Atherosclerosis, 2020, 292, 1-9.	0.8	69
18	Adiponectin promotes muscle regeneration through binding to T-cadherin. Scientific Reports, 2019, 9, 16.	3.3	60

#	Article	IF	Citations
19	Association of Epicardial, Visceral, and Subcutaneous Fat With Cardiometabolic Diseases. Circulation Journal, 2018, 82, 502-508.	1.6	56
20	Implications of aquaglyceroporins 7 and 9 in glycerol metabolism and metabolic syndrome. Molecular Aspects of Medicine, 2012, 33, 665-675.	6.4	54
21	Low muscle quality in Japanese type 2 diabetic patients with visceral fat accumulation. Cardiovascular Diabetology, 2018, 17, 112.	6.8	53
22	The unique prodomain of T-cadherin plays a key role in adiponectin binding with the essential extracellular cadherin repeats 1 and 2. Journal of Biological Chemistry, 2017, 292, 7840-7849.	3.4	51
23	Role of Aquaporin-7 and Aquaporin-9 in Glycerol Metabolism; Involvement in Obesity. Handbook of Experimental Pharmacology, 2009, , 233-249.	1.8	49
24	Hypoxanthine Secretion from Human Adipose Tissue and its Increase in Hypoxia. Obesity, 2018, 26, 1168-1178.	3.0	47
25	The Expression of SPARC in Adipose Tissue and Its Increased Plasma Concentration in Patients with Coronary Artery Disease. Obesity, 2001, 9, 388-393.	4.0	45
26	Visualized macrophage dynamics and significance of S100A8 in obese fat. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2058-66.	7.1	43
27	Dynamic Changes of Adiponectin and S100A8 Levels by the Selective Peroxisome Proliferator–Activated Receptor-γ Agonist Rivoglitazone. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 792-799.	2.4	40
28	Adiponectin Protein Exists in Aortic Endothelial Cells. PLoS ONE, 2013, 8, e71271.	2.5	40
29	Native adiponectin in serum binds to mammalian cells expressing T-cadherin, but not AdipoRs or calreticulin. ELife, 2019, 8, .	6.0	34
30	Ultrastructural Localization of Adiponectin protein in Vasculature of Normal and Atherosclerotic mice. Scientific Reports, 2014, 4, 4895.	3.3	33
31	Impact of hyperuricemia on chronic kidney disease and atherosclerotic cardiovascular disease. Hypertension Research, 2022, 45, 635-640.	2.7	32
32	Long-term impact of liraglutide, a glucagon-like peptide-1 (GLP-1) analogue, on body weight and glycemic control in Japanese type 2 diabetes: an observational study. Diabetology and Metabolic Syndrome, 2014, 6, 95.	2.7	27
33	A pilot three-month sitagliptin treatment increases serum adiponectin level in Japanese patients with type 2 diabetes mellitus- a randomized controlled trial START-J study. Cardiovascular Diabetology, 2014, 13, 96.	6.8	24
34	Human adipose-derived mesenchymal stem cells prevent type 1 diabetes induced by immune checkpoint blockade. Diabetologia, 2022, 65, 1185 - 1197 .	6.3	19
35	Systemic arteriosclerosis and eating behavior in Japanese type 2 diabetic patients with visceral fat accumulation. Cardiovascular Diabetology, 2015, 14, 8.	6.8	17
36	Significant Association of Serum Adiponectin and Creatine Kinase-MB Levels in ST-Segment Elevation Myocardial Infarction. Journal of Atherosclerosis and Thrombosis, 2017, 24, 793-803.	2.0	17

#	Article	IF	Citations
37	Pioglitazone strengthen therapeutic effect of adipose-derived regenerative cells against ischemic cardiomyopathy through enhanced expression of adiponectin and modulation of macrophage phenotype. Cardiovascular Diabetology, 2019, 18, 39.	6.8	17
38	A disintegrin and metalloproteinase 12 prevents heart failure by regulating cardiac hypertrophy and fibrosis. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H238-H251.	3.2	17
39	Increased vascular permeability and severe renal tubular damage after ischemia-reperfusion injury in mice lacking adiponectin or T-cadherin. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E179-E190.	3.5	17
40	Effect of adiponectin on cardiac \hat{l}^2 -catenin signaling pathway under angiotensin II infusion. Biochemical and Biophysical Research Communications, 2014, 444, 224-229.	2.1	15
41	Cardiovascular-metabolic impact of adiponectin and aquaporin [Review]. Endocrine Journal, 2013, 60, 251-259.	1.6	14
42	Impact of glycosylphosphatidylinositol-specific phospholipase D on hepatic diacylglycerol accumulation, steatosis, and insulin resistance in diet-induced obesity. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E239-E250.	3.5	14
43	Adiponectin accumulation in the retinal vascular endothelium and its possible role in preventing early diabetic microvascular damage. Scientific Reports, 2022, 12, 4159.	3.3	14
44	Westernization of lifestyle affects quantitative and qualitative changes in adiponectin. Cardiovascular Diabetology, 2017, 16, 83.	6.8	13
45	Impact of visceral fat on gene expression profile in peripheral blood cells in obese Japanese subjects. Cardiovascular Diabetology, 2016, 15, 159.	6.8	12
46	Possible Involvement of Opa-Interacting Protein 5 in Adipose Proliferation and Obesity. PLoS ONE, 2014, 9, e87661.	2.5	11
47	Increased plasma XOR activity induced by NAFLD/NASH and its possible involvement in vascular neointimal proliferation. JCI Insight, 2021, 6, .	5.0	11
48	Positive correlation between fasting plasma glucagon and serum C-peptide in Japanese patients with diabetes. Heliyon, 2019, 5, e01715.	3.2	9
49	Plasma xanthine oxidoreductase activity in Japanese patients with typeÂ2 diabetes across hospitalized treatment. Journal of Diabetes Investigation, 2020, 12, 1512-1520.	2.4	7
50	Adipose Hypothermia in Obesity and Its Association with Period Homolog 1, Insulin Sensitivity, and Inflammation in Fat. PLoS ONE, 2014, 9, e112813.	2.5	6
51	Effect of 4-[(5,6,7,8-Tetrahydro-5,5,8,8-Tetramethyl-2-Naphthalenyl)Carbamoyl]Benzoic Acid (Am80) on Alveolar Regeneration in Adiponectin Deficient-Mice Showing a Chronic Obstructive Pulmonary Disease–Like Pathophysiology. Journal of Pharmacology and Experimental Therapeutics, 2017, 361, 501-505.	2.5	5
52	Identification and Clinical Associations of 3 Forms of Circulating T-cadherin in Human Serum. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 1333-1344.	3.6	5
53	Characteristics of sleep–wake cycle and sleep duration in Japanese type 2 diabetes patients with visceral fat accumulation. Journal of Diabetes Investigation, 2018, 9, 63-68.	2.4	4
54	Asymptomatic Pontine Lesion and Diabetic Amyotrophy after Rapid Improvement of Poor Glycemic Control in a Patient with Type 1 Diabetes. Internal Medicine, 2019, 58, 3433-3439.	0.7	4

#	Article	lF	Citations
55	Association of abdominal obesity with crossing capillaries in the finger nailfold in type 2 diabetes mellitus. Diabetology International, 2021, 12, 260-267.	1.4	2
56	Multiple Gouty Tophi with Bone Erosion and Destruction: A Report of an Early-onset Case in an Obese Patient. Internal Medicine, 2017, 56, 1071-1077.	0.7	1
57	Marked Hypergastrinemia with G-cell Hyperplasia in Two Autoimmune Gastritis Patients. Internal Medicine, 2020, 59, 799-803.	0.7	1
58	A Japanese patient with a 2p25.3 terminal deletion presented with earlyâ€onset obesity, intellectual disability and diabetes mellitus: A case report. Journal of Diabetes Investigation, 2022, 13, 391-396.	2.4	1
59	Time-Series Change of Serum Soluble T-Cadherin Concentrations and Its Association with Creatine Kinase-MB Levels in ST-Segment Elevation Myocardial Infarction. Journal of Atherosclerosis and Thrombosis, 2022, 29, 1823-1834.	2.0	1
60	Genetic assessment using whole-exome sequencing for a young hypertriglyceridemic patient with repeated acute pancreatitis. Endocrine Journal, 2022, 69, 1101-1108.	1.6	1
61	Individual evaluation of aging- and caloric restriction-related changes to distinct multimeric complexes of circulating adiponectin by immunoblotting. Experimental Gerontology, 2022, 164, 111821.	2.8	0