Christopher R Pudney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/579592/publications.pdf

Version: 2024-02-01

45 papers 1,439 citations

³⁶¹⁴¹³
20
h-index

36 g-index

47 all docs

47 docs citations

times ranked

47

1479 citing authors

#	Article	IF	CITATIONS
1	Reliable <i>In Silico</i> Ranking of Engineered Therapeutic TCR Binding Affinities with MMPB/GBSA. Journal of Chemical Information and Modeling, 2022, 62, 577-590.	5.4	8
2	Conformation control of the histidine kinase BceS of <i>Bacillus subtilis</i> by its cognate ABCâ€transporter facilitates needâ€based activation of antibiotic resistance. Molecular Microbiology, 2021, 115, 157-174.	2.5	20
3	Flavin mimetics: Synthesis and photophysical properties. Tetrahedron, 2021, 82, 131925.	1.9	3
4	Sensing Enzyme Activation Heat Capacity at the Single-Molecule Level Using Gold-Nanorod-Based Optical Whispering Gallery Modes. ACS Applied Nano Materials, 2021, 4, 4576-4583.	5.0	20
5	Rigidifying a <i>De Novo</i> Enzyme Increases Activity and Induces a Negative Activation Heat Capacity. ACS Catalysis, 2021, 11, 11532-11541.	11.2	15
6	Chemical Mapping Exposes the Importance of Active Site Interactions in Governing the Temperature Dependence of Enzyme Turnover. ACS Catalysis, 2021, 11, 14854-14863.	11.2	6
7	Structure and <i>in silico</i> simulations of a cold-active esterase reveals its prime cold-adaptation mechanism. Open Biology, 2021, 11, 210182.	3.6	10
8	Molecular Rules Underpinning Enhanced Affinity Binding of Human T Cell Receptors Engineered for Immunotherapy. Molecular Therapy - Oncolytics, 2020, 18, 443-456.	4.4	9
9	Switching protein metalloporphyrin binding specificity by design from iron to fluorogenic zinc. Chemical Communications, 2020, 56, 4308-4311.	4.1	4
10	Peptide cargo tunes a network of correlated motions in human leucocyte antigens. FEBS Journal, 2020, 287, 3777-3793.	4.7	6
11	Enzyme evolution and the temperature dependence of enzyme catalysis. Current Opinion in Structural Biology, 2020, 65, 96-101.	5.7	54
12	Monoclonal antibody stability can be usefully monitored using the excitation-energy-dependent fluorescence edge-shift. Biochemical Journal, 2020, 477, 3599-3612.	3.7	13
13	Synthetic Cannabinoid Receptor Agonists Detection Using Fluorescence Spectral Fingerprinting. Analytical Chemistry, 2019, 91, 12971-12979.	6.5	13
14	Analysis of synthetic cannabinoid agonists and their degradation products after combustion in a smoking simulator. Analytical Methods, 2019, 11, 3101-3107.	2.7	10
15	Exposing the Interplay Between Enzyme Turnover, Protein Dynamics, and the Membrane Environment in Monoamine Oxidase B. Biochemistry, 2019, 58, 2362-2372.	2.5	12
16	Excitation-Energy-Dependent Molecular Beacon Detects Early Stage Neurotoxic A \hat{l}^2 Aggregates in the Presence of Cortical Neurons. ACS Chemical Neuroscience, 2019, 10, 1240-1250.	3. 5	8
17	Uncovering the Relationship between the Change in Heat Capacity for Enzyme Catalysis and Vibrational Frequency through Isotope Effect Studies. ACS Catalysis, 2018, 8, 5340-5349.	11.2	13
18	Steady-State Kinetics of \hat{l} ±-Synuclein Ferrireductase Activity Identifies the Catalytically Competent Species. Biochemistry, 2017, 56, 2497-2505.	2.5	21

#	Article	IF	CITATIONS
19	A complete thermodynamic analysis of enzyme turnover links the free energy landscape to enzyme catalysis. FEBS Journal, 2017, 284, 2829-2842.	4.7	39
20	Modelling flavoenzymatic charge transfer events: development of catalytic indole deuteration strategies. Organic and Biomolecular Chemistry, 2016, 14, 3787-3792.	2.8	6
21	The red edge excitation shift phenomenon can be used to unmask protein structural ensembles: implications for NEMO–ubiquitin interactions. FEBS Journal, 2016, 283, 2272-2284.	4.7	44
22	On the Temperature Dependence of Enzyme-Catalyzed Rates. Biochemistry, 2016, 55, 1681-1688.	2.5	233
23	Change in heat capacity accurately predicts vibrational coupling in enzyme catalyzed reactions. FEBS Letters, 2015, 589, 2200-2206.	2.8	19
24	Polyubiquitin Drives the Molecular Interactions of the NF-κB Essential Modulator (NEMO) by Allosteric Regulation. Journal of Biological Chemistry, 2015, 290, 14130-14139.	3.4	23
25	Practical Aspects on the Use of Kinetic Isotope Effects as Probes of Flavoprotein Enzyme Mechanisms. Methods in Molecular Biology, 2014, 1146, 161-175.	0.9	6
26	Fast Protein Motions Are Coupled to Enzyme H-Transfer Reactions. Journal of the American Chemical Society, 2013, 135, 2512-2517.	13.7	83
27	Excited State Dynamics Can Be Used to Probe Donor-Acceptor Distances for H-Tunneling Reactions Catalyzed by Flavoproteins. Biophysical Journal, 2013, 105, 2549-2558.	0.5	17
28	Enzymatic Single-Molecule Kinetic Isotope Effects. Journal of the American Chemical Society, 2013, 135, 3855-3864.	13.7	21
29	Gating mechanisms for biological electron transfer: Integrating structure with biophysics reveals the nature of redox control in cytochrome P450 reductase and copperâ€dependent nitrite reductase. FEBS Letters, 2012, 586, 578-584.	2.8	31
30	Kinetic and spectroscopic probes of motions and catalysis in the cytochrome P450 reductase family of enzymes. FEBS Journal, 2012, 279, 1534-1544.	4.7	18
31	Coupled Motions Direct Electrons along Human Microsomal P450 Chains. PLoS Biology, 2011, 9, e1001222.	5.6	48
32	Biocatalysis with Thermostable Enzymes: Structure and Properties of a Thermophilic â€~ene'â€Reductase related to Old Yellow Enzyme. ChemBioChem, 2010, 11, 197-207.	2.6	110
33	Probing active site geometry using high pressure and secondary isotope effects in an enzymeâ€catalysed â€~deep' Hâ€tunnelling reaction. Journal of Physical Organic Chemistry, 2010, 23, 696-701.	1.9	16
34	Direct Analysis of Donorâ ⁻ 'Acceptor Distance and Relationship to Isotope Effects and the Force Constant for Barrier Compression in Enzymatic H-Tunneling Reactions. Journal of the American Chemical Society, 2010, 132, 11329-11335.	13.7	74
35	Parallel Pathways and Freeâ€Energy Landscapes for Enzymatic Hydride Transfer Probed by Hydrostatic Pressure. ChemBioChem, 2009, 10, 1379-1384.	2.6	22
36	Barrier Compression Enhances an Enzymatic Hydrogenâ€Transfer Reaction. Angewandte Chemie - International Edition, 2009, 48, 1452-1454.	13.8	52

#	Article	IF	CITATION
37	Structural and mechanistic aspects of flavoproteins: probes of hydrogen tunnelling. FEBS Journal, 2009, 276, 3930-3941.	4.7	27
38	Bipartite recognition and conformational sampling mechanisms for hydride transfer from nicotinamide coenzyme to FMN in pentaerythritol tetranitrate reductase. FEBS Journal, 2009, 276, 4780-4789.	4.7	24
39	Evidence To Support the Hypothesis That Promoting Vibrations Enhance the Rate of an Enzyme Catalyzed H-Tunneling Reaction. Journal of the American Chemical Society, 2009, 131, 17072-17073.	13.7	79
40	Solvent as a Probe of Active Site Motion and Chemistry during the Hydrogen Tunnelling Reaction in Morphinone Reductase. ChemPhysChem, 2008, 9, 1875-1881.	2.1	16
41	Are Environmentally Coupled Enzymatic Hydrogen Tunneling Reactions Influenced by Changes in Solution Viscosity?. Angewandte Chemie - International Edition, 2008, 47, 537-540.	13.8	34
42	Correction of Pre-Steady-State KIEs for Isotopic Impurities and the Consequences of Kinetic Isotope Fractionation. Journal of Physical Chemistry A, 2008, 112, 13109-13115.	2.5	9
43	Atomistic insight into the origin of the temperature-dependence of kinetic isotope effects and H-tunnelling in enzyme systems is revealed through combined experimental studies and biomolecular simulation. Biochemical Society Transactions, 2008, 36, 16-21.	3.4	21
44	Mutagenesis of Morphinone Reductase Induces Multiple Reactive Configurations and Identifies Potential Ambiguity in Kinetic Analysis of Enzyme Tunneling Mechanisms. Journal of the American Chemical Society, 2007, 129, 13949-13956.	13.7	55
45	α-Secondary Isotope Effects as Probes of "Tunneling-Ready―Configurations in Enzymatic H-Tunneling:Â Insight from Environmentally Coupled Tunneling Models. Journal of the American Chemical Society, 2006, 128, 14053-14058.	13.7	66