
Martina Piccoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/579591/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Customized bioreactor enables the production of 3D diaphragmatic constructs influencing matrix remodeling and fibroblast overgrowth. Npj Regenerative Medicine, 2022, 7, 25.	5.2	5
2	Muscle functional recovery is driven by extracellular vesicles combined with muscle extracellular matrix in a volumetric muscle loss murine model. Biomaterials, 2021, 269, 120653.	11.4	15
3	A Novel Bioreactor for the Mechanical Stimulation of Clinically Relevant Scaffolds for Muscle Tissue Engineering Purposes. Processes, 2021, 9, 474.	2.8	10
4	Porcine Decellularized Diaphragm Hydrogel: A New Option for Skeletal Muscle Malformations. Biomedicines, 2021, 9, 709.	3.2	18
5	Patient-derived ECM-scaffolds of colorectal cancer and liver metastases as organotypic 3D model of liver metastatic colonization. Journal of Hepatology, 2020, 73, S642-S643.	3.7	0
6	Young at Heart: Combining Strategies to Rejuvenate Endogenous Mechanisms of Cardiac Repair. Frontiers in Bioengineering and Biotechnology, 2020, 8, 447.	4.1	17
7	Extracellular Matrix-Derived Hydrogels as Biomaterial for Different Skeletal Muscle Tissue Replacements. Materials, 2020, 13, 2483.	2.9	34
8	Recellularized Colorectal Cancer Patient-Derived Scaffolds as In Vitro Pre-Clinical 3D Model for Drug Screening. Cancers, 2020, 12, 681.	3.7	32
9	Patient-Derived Scaffolds of Colorectal Cancer Metastases as an Organotypic 3D Model of the Liver Metastatic Microenvironment. Cancers, 2020, 12, 364.	3.7	44
10	In Utero Transplantation of Expanded Autologous Amniotic Fluid Stem Cells Results in Long-Term Hematopoietic Engraftment. Stem Cells, 2019, 37, 1176-1188.	3.2	13
11	Allogenic tissue-specific decellularized scaffolds promote long-term muscle innervation and functional recovery in a surgical diaphragmatic hernia model. Acta Biomaterialia, 2019, 89, 115-125.	8.3	24
12	Generation of a Functioning and Self-Renewing Diaphragmatic Muscle Construct. Stem Cells Translational Medicine, 2019, 8, 858-869.	3.3	27
13	Decellularized colorectal cancer matrix as bioactive microenvironment for in vitro 3D cancer research. Journal of Cellular Physiology, 2018, 233, 5937-5948.	4.1	61
14	The Amniotic Fluid Stem Cell Secretome. , 2018, , 21-37.		0
15	Decellularized Diaphragmatic Muscle Drives a Constructive Angiogenic Response In Vivo. International Journal of Molecular Sciences, 2018, 19, 1319.	4.1	24
16	A finite element analysis of diaphragmatic hernia repair on an animal model. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 86, 33-42.	3.1	13
17	First Characterization of Human Amniotic Fluid Stem Cell Extracellular Vesicles as a Powerful Paracrine Tool Endowed with Regenerative Potential. Stem Cells Translational Medicine, 2017, 6, 1340-1355.	3.3	104
18	Mouse Skeletal Muscle Decellularization. Methods in Molecular Biology, 2017, 1577, 87-93.	0.9	12

MARTINA PICCOLI

#	Article	IF	CITATIONS
19	The Production of Pluripotent Stem Cells from Mouse Amniotic Fluid Cells Using a Transposon System. Journal of Visualized Experiments, 2017, , .	0.3	2
20	Extracellular Matrix and Colorectal Cancer: How Surrounding Microenvironment Affects Cancer Cell Behavior?. Journal of Cellular Physiology, 2017, 232, 967-975.	4.1	108
21	Challenges and Strategies for Improving the Regenerative Effects of Mesenchymal Stromal Cell-Based Therapies. International Journal of Molecular Sciences, 2017, 18, 2087.	4.1	178
22	Diverging Concepts and Novel Perspectives in Regenerative Medicine. International Journal of Molecular Sciences, 2017, 18, 1021.	4.1	16
23	Isolation and Expansion of Muscle Precursor Cells from Human Skeletal Muscle Biopsies. Methods in Molecular Biology, 2016, 1516, 195-204.	0.9	10
24	First steps to define murine amniotic fluid stem cell microenvironment. Scientific Reports, 2016, 6, 37080.	3.3	11
25	Improvement of diaphragmatic performance through orthotopic application of decellularized extracellular matrix patch. Biomaterials, 2016, 74, 245-255.	11.4	62
26	Reprogramming of mouse amniotic fluid cells using a PiggyBac transposon system. Stem Cell Research, 2015, 15, 510-513.	0.7	7
27	Endothelial properties of third-trimester amniotic fluid stem cells cultured in hypoxia. Stem Cell Research and Therapy, 2015, 6, 209.	5.5	31
28	Fetal Stem Cells and Skeletal Muscle Regeneration: A Therapeutic Approach. Frontiers in Aging Neuroscience, 2014, 6, 222.	3.4	6
29	Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in necrotising enterocolitis via a COX-2 dependent mechanism. Gut, 2014, 63, 300-309.	12.1	155
30	Stem cells from fetal membranes and amniotic fluid: markers for cell isolation and therapy. Cell and Tissue Banking, 2014, 15, 199-211.	1.1	24
31	Hematopoietic Engraftment of Amniotic Fluid Stem Cells Following in Utero Transplantation. Blood, 2014, 124, 3809-3809.	1.4	1
32	Singleâ€cell <scp>PCR</scp> analysis of murine embryonic stem cells cultured on different substrates highlights heterogeneous expression of stem cell markers. Biology of the Cell, 2013, 105, 549-560.	2.0	6
33	Isolation of c-Kit+ Human Amniotic Fluid Stem Cells from Second Trimester. Methods in Molecular Biology, 2013, 1035, 191-198.	0.9	23
34	Sources of Mesenchymal Stem Cells: Current and Future Clinical Use. Advances in Biochemical Engineering/Biotechnology, 2012, 130, 267-286.	1.1	5
35	Human Amniotic Fluid Stem Cell Preconditioning Improves Their Regenerative Potential. Stem Cells and Development, 2012, 21, 1911-1923.	2.1	112
36	Amniotic Fluid Stem Cells Restore the Muscle Cell Niche in a <i>HSA re</i> , <i> Smn ^{F7/F7}</i> Mouse Model. Stem Cells, 2012, 30, 1675-1684.	3.2	61

MARTINA PICCOLI

#	Article	IF	CITATIONS
37	Hypoxia Increases Mouse Satellite Cell Clone Proliferation Maintaining both In Vitro and In Vivo Heterogeneity and Myogenic Potential. PLoS ONE, 2012, 7, e49860.	2.5	36
38	In Vitro and In Vivo Cardiomyogenic Differentiation of Amniotic Fluid Stem Cells. Stem Cell Reviews and Reports, 2011, 7, 364-380.	5.6	82
39	Design of a stirred multiwell bioreactor for expansion of CD34 ⁺ umbilical cord blood cells in hypoxic conditions. Biotechnology Progress, 2011, 27, 1154-1162.	2.6	4
40	Increased adipogenic conversion of muscle satellite cells in obese Zucker rats. International Journal of Obesity, 2010, 34, 1319-1327.	3.4	54
41	Mesenchymal Stromal Cells Can Be Derived From Bone Marrow CD133 ⁺ Cells: Implications for Therapy. Stem Cells and Development, 2009, 18, 497-510.	2.1	33
42	Muscle Differentiation and Myotubes Alignment Is Influenced by Micropatterned Surfaces and Exogenous Electrical Stimulation. Tissue Engineering - Part A, 2009, 15, 2447-2457.	3.1	55
43	The influence of heart valve leaflet matrix characteristics on the interaction between human mesenchymal stem cells and decellularized scaffolds. Biomaterials, 2009, 30, 4104-4116.	11.4	79
44	High Transduction Efficiency of Human Amniotic Fluid Stem Cells Mediated by Adenovirus Vectors. Stem Cells and Development, 2008, 17, 953-962.	2.1	45
45	Different Cardiovascular Potential of Adult- and Fetal-Type Mesenchymal Stem Cells in a Rat Model of Heart Cryoinjury. Cell Transplantation, 2008, 17, 679-694.	2.5	63
46	Efficient Delivery of Human Single Fiber-Derived Muscle Precursor Cells via Biocompatible Scaffold. Cell Transplantation, 2008, 17, 577-584.	2.5	42
47	Satellite Cells Delivered by Micro-Patterned Scaffolds: A New Strategy for Cell Transplantation in Muscle Diseases. Tissue Engineering, 2007, 13, 253-262.	4.6	62
48	Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immuno-deficient rat. Journal of Molecular and Cellular Cardiology, 2007, 42, 746-759.	1.9	144
49	Amniotic Fluid and Bone Marrow Derived Mesenchymal Stem Cells Can be Converted to Smooth Muscle Cells in the Cryo-Injured Rat Bladder and Prevent Compensatory Hypertrophy of Surviving Smooth Muscle Cells. Journal of Urology, 2007, 177, 369-376.	0.4	193
50	Isolation of Mesenchymal Stem Cells From Human Vermiform Appendix. Journal of Surgical Research, 2006, 135, 85-91.	1.6	28
51	Rosiglitazone modifies the adipogenic potential of human muscle satellite cells. Diabetologia, 2006, 49, 1962-1973.	6.3	69
52	3D in vitro Models of Pathological Skeletal Muscle: Which Cells and Scaffolds to Elect?. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	2