Paul G Royall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5794285/publications.pdf Version: 2024-02-01

PALL C. ROVALL

#	Article	IF	CITATIONS
1	Development of a pointâ€ofâ€care test for the detection of MDMA in latent fingerprints using surface plasmon resonance and lateral flow technology. Drug Testing and Analysis, 2022, 14, 613-621.	2.6	3
2	Solid Dispersions of Gefitinib Prepared by Spray Drying with Improved Mucoadhesive and Drug Dissolution Properties. AAPS PharmSciTech, 2022, 23, 48.	3.3	13
3	Enabling Safe and Sustainable Medical Deliveries by Connected Autonomous Freight Vehicles Operating within Dangerous Goods Regulations. Sustainability, 2022, 14, 930.	3.2	3
4	A Novel Multilayer Natural Coating for Fed-State Gastric Protection. Pharmaceutics, 2022, 14, 283.	4.5	1
5	Pharmaceutical, biomedical and ophthalmic applications of biodegradable polymers (BDPs): literature and patent review. Pharmaceutical Development and Technology, 2022, 27, 341-356.	2.4	10
6	Mechanistic study of the solubilization effect of basic amino acids on a poorly water-soluble drug. RSC Advances, 2022, 12, 19040-19053.	3.6	8
7	Cyclodextrin Diethyldithiocarbamate Copper II Inclusion Complexes: A Promising Chemotherapeutic Delivery System against Chemoresistant Triple Negative Breast Cancer Cell Lines. Pharmaceutics, 2021, 13, 84.	4.5	15
8	Sunscreens Containing Cyclodextrin Inclusion Complexes for Enhanced Efficiency: A Strategy for Skin Cancer Prevention. Molecules, 2021, 26, 1698.	3.8	18
9	Quantifying the Effects of Vibration on Medicines in Transit Caused by Fixed-Wing and Multi-Copter Drones. Drones, 2021, 5, 22.	4.9	22
10	Using Robotics in Laboratories During the COVID-19 Outbreak: A Review. IEEE Robotics and Automation Magazine, 2021, 28, 28-39.	2.0	11
11	Repurposing Melt Degradation for the Evaluation of Mixed Amorphous-Crystalline Blends. AAPS PharmSciTech, 2021, 22, 105.	3.3	4
12	How Do Dangerous Goods Regulations Apply to Uncrewed Aerial Vehicles Transporting Medical Cargos?. Drones, 2021, 5, 38.	4.9	19
13	Stability of α-lactose monohydrate: The discovery of dehydration triggered solid-state epimerization. International Journal of Pharmaceutics, 2021, 604, 120715.	5.2	12
14	Controlling drug release with additive manufacturing-based solutions. Advanced Drug Delivery Reviews, 2021, 174, 369-386.	13.7	33
15	Digital Image Disintegration Analysis: a Novel Quality Control Method for Fast Disintegrating Tablets. AAPS PharmSciTech, 2021, 22, 219.	3.3	7
16	Polyelectrolyte Multi-Layered Griseofulvin Nanoparticles: Conventional versus Continuous In-Situ Layer-by-Layer Fabrication. Journal of Nanoscience and Nanotechnology, 2021, 21, 5611-5621.	0.9	1
17	Solid-state epimerisation and disproportionation of pilocarpine HCI: Why we need a 5-stage approach to validate melting point measurements for heat-sensitive drugs. International Journal of Pharmaceutics, 2020, 574, 118869.	5.2	7
18	An Evaluation of the Drone Delivery of Adrenaline Auto-Injectors for Anaphylaxis: Pharmacists' Perceptions, Acceptance, and Concerns. Drones, 2020, 4, 66.	4.9	19

PAUL G ROYALL

#	Article	IF	CITATIONS
19	A Cyclodextrinâ€Stabilized Spermineâ€Tagged Drug Triplex that Targets Theophylline to the Lungs Selectively in Respiratory Emergency. Advanced Therapeutics, 2020, 3, 2000153.	3.2	2
20	An innovative wax-based enteric coating for pharmaceutical and nutraceutical oral products. International Journal of Pharmaceutics, 2020, 591, 119935.	5.2	12
21	A novel natural GRAS-grade enteric coating for pharmaceutical and nutraceutical products. International Journal of Pharmaceutics, 2020, 584, 119392.	5.2	15
22	An Evaluation of the Delivery of Medicines Using Drones. Drones, 2019, 3, 52.	4.9	58
23	Anti-counterfeiting DNA molecular tagging of pharmaceutical excipients: An evaluation of lactose containing tablets. International Journal of Pharmaceutics, 2019, 571, 118656.	5.2	11
24	<p>Ocular anti-inflammatory activity of prednisolone acetate loaded chitosan-deoxycholate self-assembled nanoparticles</p> . International Journal of Nanomedicine, 2019, Volume 14, 3679-3689.	6.7	35
25	Retinal cell regeneration using tissue engineered polymeric scaffolds. Drug Discovery Today, 2019, 24, 1669-1678.	6.4	25
26	Potential Use of the Maillard Reaction for Pharmaceutical Applications: Gastric and Intestinal Controlled Release Alginate-Albumin Beads. Pharmaceutics, 2019, 11, 83.	4.5	15
27	Variability in the $\hat{I}\pm$ and \hat{I}^2 anomer content of commercially available lactose. International Journal of Pharmaceutics, 2019, 555, 237-249.	5.2	24
28	Buccal drug delivery technologies for patient-centred treatment of radiation-induced xerostomia (dry mouth). International Journal of Pharmaceutics, 2018, 541, 157-166.	5.2	22
29	The use of albumin solid dispersion to enhance the solubility of unionizable drugs. Pharmaceutical Development and Technology, 2018, 23, 732-738.	2.4	7
30	Crystallisation of freeze-dried sucrose in model mixtures that represent the amorphous sugar matrices present in confectionery. Food and Function, 2018, 9, 4621-4634.	4.6	10
31	Glycerol Solvates DPPC Headgroups and Localizes in the Interfacial Regions of Model Pulmonary Interfaces Altering Bilayer Structure. Langmuir, 2018, 34, 6941-6954.	3.5	25
32	Design and development of a biorelevant simulated human lung fluid. Journal of Drug Delivery Science and Technology, 2018, 47, 485-491.	3.0	32
33	Structural and enzyme kinetic studies of retrograded starch: Inhibition of α-amylase and consequences for intestinal digestion of starch. Carbohydrate Polymers, 2017, 164, 154-161.	10.2	104
34	A Biocompatible Synthetic Lung Fluid Based on Human Respiratory Tract Lining Fluid Composition. Pharmaceutical Research, 2017, 34, 2454-2465.	3.5	49
35	In-situ freeze-drying - forming amorphous solids directly within capsules: An investigation of dissolution enhancement for a poorly soluble drug. Scientific Reports, 2017, 7, 2910.	3.3	29
36	In Vitro Evaluation of Third Generation PAMAM Dendrimer Conjugates. Molecules, 2017, 22, 1661.	3.8	20

PAUL G ROYALL

#	Article	IF	CITATIONS
37	Efficient approach to enhance drug solubility by particle engineering of bovine serum albumin. International Journal of Pharmaceutics, 2016, 515, 740-748.	5.2	22
38	Naloxone without the needle â^' systematic review of candidate routes for non-injectable naloxone for opioid overdose reversal. Drug and Alcohol Dependence, 2016, 163, 16-23.	3.2	38
39	Amorphous Formulation and <i>in Vitro</i> Performance Testing of Instantly Disintegrating Buccal Tablets for the Emergency Delivery of Naloxone. Molecular Pharmaceutics, 2016, 13, 1688-1698.	4.6	13
40	Effect of non-cross-linked calcium on characteristics, swelling behaviour, drug release and mucoadhesiveness of calcium alginate beads. Carbohydrate Polymers, 2016, 140, 163-170.	10.2	30
41	A study of starch gelatinisation behaviour in hydrothermally-processed plant food tissues and implications for in vitro digestibility. Food and Function, 2015, 6, 3634-3641.	4.6	87
42	Differences in physical chemistry and dissolution rate of solid particle aerosols from solution pressurised inhalers. International Journal of Pharmaceutics, 2014, 465, 42-51.	5.2	45
43	Stability of Sugar Solutions: A Novel Study of the Epimerization Kinetics of Lactose in Water. Molecular Pharmaceutics, 2014, 11, 2224-2238.	4.6	17
44	Infrared Spectroscopy with Heated Attenuated Total Internal Reflectance Enabling Precise Measurement of Thermally Induced Transitions in Complex Biological Polymers. Analytical Chemistry, 2013, 85, 3999-4006.	6.5	39
45	Immersion mode material pocket dynamic mechanical analysis (IMP-DMA): A novel tool to study gelatinisation of purified starches and starch-containing plant materials. Carbohydrate Polymers, 2012, 90, 628-636.	10.2	9
46	The Measurement of the $\hat{l}^2/\hat{l}\pm$ Anomer Composition Within Amorphous Lactose Prepared by Spray and Freeze Drying Using a Simple 1H-NMR Method. Pharmaceutical Research, 2012, 29, 511-524.	3.5	37
47	Characterisation and Deposition Studies of Recrystallised Lactose from Binary Mixtures of Ethanol/Butanol for Improved Drug Delivery from Dry Powder Inhalers. AAPS Journal, 2011, 13, 30-43.	4.4	61
48	Binding interactions of \hat{l} ±-amylase with starch granules: The influence of supramolecular structure and surface area. Carbohydrate Polymers, 2011, 86, 1038-1047.	10.2	116
49	Removal of ciprofloxacin in simulated digestive media by activated charcoal entrapped within zinc-pectinate beads. International Journal of Pharmaceutics, 2009, 379, 251-259.	5.2	22
50	Monitoring crystallisation of drugs from fast-dissolving oral films with isothermal calorimetry. International Journal of Pharmaceutics, 2009, 380, 105-111.	5.2	28
51	A novel powder sample holder for the determination of glass transition temperatures by DMA. International Journal of Pharmaceutics, 2009, 371, 120-125.	5.2	41
52	A comparison of chemical reference materials for solution calorimeters. International Journal of Pharmaceutics, 2005, 299, 73-83.	5.2	18
53	The development of DMA for the detection of amorphous content in pharmaceutical powdered materials. International Journal of Pharmaceutics, 2005, 301, 181-191.	5.2	100
54	Application of Solution Calorimetry in Pharmaceutical and Biopharmaceutical Research. Current Pharmaceutical Biotechnology, 2005, 6, 215-222.	1.6	23

PAUL G ROYALL

#	Article	IF	CITATIONS
55	An investigation of calibration methods for solution calorimetry. International Journal of Pharmaceutics, 2004, 269, 361-372.	5.2	28
56	The potential of high speed DSC (Hyper-DSC) for the detection and quantification of small amounts of amorphous content in predominantly crystalline samples. International Journal of Pharmaceutics, 2004, 274, 35-40.	5.2	92
57	Solution calorimetry as a tool to study the neutralising capacity of magnesium trisilicate mixture BP and its components. Thermochimica Acta, 2004, 417, 217-221.	2.7	5
58	The effect of hydration on the thermal behaviour of hydrophilic non-aqueous gels stabilised by Carbopol 974P. Thermochimica Acta, 2004, 417, 251-255.	2.7	6
59	The use of micro-thermal analysis as a means of in situ characterisation of a pharmaceutical tablet coat. Thermochimica Acta, 2001, 380, 165-173.	2.7	15
60	Characterization of amorphous ketoconazole using modulated temperature differential scanning calorimetry. Journal of Pharmaceutical Sciences, 2001, 90, 996-1003.	3.3	16
61	An investigation into the surface deposition of progesterone on poly (d,l-) lactic acid microspheres using micro-thermal analysis. Pharmaceutical Research, 2001, 18, 294-298.	3.5	17
62	An evaluation of the use of modulated temperature DSC as a means of assessing the relaxation behaviour of amorphous lactose. Pharmaceutical Research, 2000, 17, 696-700.	3.5	54
63	Characterisation of moisture uptake effects on the glass transitional behaviour of an amorphous drug using modulated temperature DSC. International Journal of Pharmaceutics, 1999, 192, 39-46.	5.2	40
64	The detection of amorphous material in a nominally crystalline drug using modulated temperature DSC—a case study. International Journal of Pharmaceutics, 1999, 192, 55-62.	5.2	36
65	An investigation into the use of micro-thermal analysis for the solid state characterisation of an HPMC tablet formulation. International Journal of Pharmaceutics, 1999, 192, 97-103.	5.2	37
66	Monitor: Profiles. Pharmaceutical Science & Technology Today, 1999, 2, 217-219.	0.7	0
67	Characterisation of the glass transition of an amorphous drug using modulated DSC. Pharmaceutical Research, 1998, 15, 1117-1121.	3.5	69
68	The use of modulated temperature DSC for the study of pharmaceutical systems: potential uses and limitations. , 1998, 15, 1152-1153.		32